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AGSMM : AGS main magnet

The AGS main magnet is a combined function dipole with straight axis (lines of constant field are straight lines).
The field computation routines for AGSMM are the same as for MULTIPOL (details in section ??, page ??), however AGSMM
has the following four particularities :

• There are only three multipole components present in AGSMM : dipole, quadrupole and sextupole.

• The dipole field B0 is drawn from the reference rigidity, Bρref , and follows the latter so to preserve ρ = Bρref/B0 and
the orbit deviation L/ρ. In particular,

– in the absence of acceleration, Bρref ≡ BORO, with BORO the quantity appearing in the object definition using
[MC]OBJET,

– in presence of acceleration using CAVITE, Bρref is changed to BORO ×Dref at each passage in the cavity, with
Dref the relative synchronous momentum increase, a quantity that zgoubi updates at cavity traversal.

• The field indices, quadrupole K1 and sextupole K2, are derived from the reference rigidity, Bρref , via momentum-
dependent polynomials, taken from Ref. [?].

• The AGS main dipole has back-leg windings, used for instance for injection and extraction orbit bumps. The number of
winding turns and the number of Ampere-turns are part of the data in the input data list. The intensity in the windings is
accounted for in the conversion from total ampere-turns in the magnet to momentum and then to magnetic field.

Note : A consequence of items 2 and 3 is that no field value is required in defining the AGS main magnets in the zgoubi.dat input
data list.
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AGSMM AGS main magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

MOD[.MOD2], dL, Type of magnet model 1 [type of back-leg winding model 2] ; 2*no dim., cm, I[.I], 5*E
R0, dB1, dB2, dB3 unused ; pole tip radius, 10 cm if set to zero ; relative 3*no dim.

error on dipole, quadrupole, sextupole component.

NBLW, Number of back-leg windings ; for each back-leg winding : ≤2, NBLW× I, NBLW×
NBLW times : NW, I number of windings, current. (any, Amp.) (I, E)

Entrance face
XE , λE , E2, E3 Integration zone ; fringe field extent : 2*cm, 2*no dim. 4*E

dipole fringe field extent = λE ;
quadrupole fringe field extent = λE ∗ E2 ;
sextuppole fringe field extent = λE ∗ E3

(sharp edge if field extent is zero)

NCE, C0 − C5 same as QUADRUPO 0-6, 6*no dim. I, 6*E

Exit face
XS , λS , S2, S3 Integration zone ; as for entrance 2*cm, 2*no dim. 4*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

R1, R2, R3 Skew angles of field components 3*rad 10*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-4, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1).

KPOS = 3 : effective only if B1 6= 0 :
entrance and exit frames are shifted by YCE
and tilted wrt. the magnet by an angle of
• either ALE if ALE6=0
• or 2Arcsin(B1XL / 2BORO) if ALE=0
KPOS = 4 : same as KPOS = 3 however
with possible X- or Y- or Z-misalignment or -rotation
(under development)

1MOD=1 : centered multipole model ; MOD=2 : long-shifted dipole model ; MOD=3 : short-shifted dipole model.
2MOD2 = 0 (default) : user defined back-leg windings (defined in routine agsblw.f) ; MOD2 = 1 : actual AGS data are taken, namely : MM A16AD :

NBLW = 1, SIGN = 1.D0, NW = 10 ; MM A17CF : NBLW = 1, SIGN = 1.D0, NW = 10 ; MM A18CF : NBLW = 1, SIGN = -1.D0, NW = 10 ; MM A19BD :
NBLW = 1, SIGN = -1.D0, NW = 12 ; MM A20BD : NBLW = 1, SIGN = 1.D0, NW = 12 ; MM B02BF : NBLW = 2, SIGN = 1.D0, NW1 = 12, SIGN = 1.D0,
NW2 = 6 ; MM B03CD : NBLW = 1, SIGN = 1.D0, NW = 10 ; MM B04CD : NBLW = 1, SIGN = -1.D0, NW = 10 ; MM B05A : NBLW = 1, SIGN = -1.D0,
NW = 10 ; MM K19BD : NBLW = 1, SIGN = 1.D0, NW = 6 ; MM K20B : NBLW = 1, SIGN = 1.D0, NW = 6 ; MM L13CF : NBLW = 1, SIGN = -1.D0,
NW = 5 ; MM L14C : NBLW = 1, SIGN = -1.D0, NW = 5 ; MM A07CD : NBLW = 1, SIGN = -1.D0, NW = 5 ; MM A08C : NBLW = 1, SIGN = -1.D0,
NW = 5 ; MM B01B : NBLW = 1, SIGN = 1.D0, NW = 6 ; MM L06A : NBLW = 1, SIGN = 1.D0, NW = 5 ; MM L07C : NBLW = 1, SIGN = 1.D0, NW =
5 ; MM A14C : NBLW = 1, SIGN = -1.D0, NW = 5 ; MM A15A : NBLW = 1, SIGN = -1.D0, NW = 5 ; MM E06A : NBLW = 1, SIGN = -1.D0, NW = 5 ;
MM E07CD : NBLW = 1, SIGN = -1.D0, NW = 5 ; MM E20BD : NBLW = 1, SIGN = 1.D0, NW = 6 ; MM F01BF : NBLW = 1, SIGN = 1.D0, NW = 6 ;
MM F14CF : NBLW = 1, SIGN = 1.D0, NW = 5 ; MM F15AD : NBLW = 1, SIGN = 1.D0, NW = 5 ; MM G08CD : NBLW = 1, SIGN = -1.D0, NW = 5 ;
MM G09BF : NBLW = 1, SIGN = -1.D0, NW = 6.

MOD2 = 1 : User defined - implementation to be completed.
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AGSQUAD : AGS quadrupole

The AGS quadrupoles are regular quadrupoles. The simulation of AGSQUAD uses the same field modelling as MULTIPOL,
section ??, page ??. However amperes are provided as input to AGSQUAD rather than fields, the reason being that some of the
AGS quadrupoles have two superimposed coil circuits, with separate power supplies. It has been dealt with this particularity by
allowing for an additional set of multipole data in AGSQUAD, compared to MULTIPOL.

The field in AGSQUAD is computed using transfer functions from the ampere-turns in the coils to magnetic field that account
for the non-linearity of the magnetic permeability [?].
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AGSQUAD AGS quadrupole

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, IW1, IW2, IW3, Length of element ; radius at pole tip ; current in windings ; 2*cm,3*A 5*E
dIW1, dIW2, dIW3 relative error on currents. 3*no dim 3*E

Entrance face
XE , λE Integration zone ; fringe field extent. 2*cm,9*no dim. 11*E

(sharp edge if field extent is zero)

NCE, C0 − C5 Same as QUADRUPO 0-6, 6*no dim. I, 6*E

Exit face
XS , λS Integration zone ; as for entrance 2*cm, 9*no dim. 11*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

R1 Roll angle 10*rad 10*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1).
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AIMANT : Generation of dipole mid-plane 2-D map, polar frame

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates.

A more recent and improved version will be found in DIPOLE-M. In addition, a similar modelling, that however skips the stage
of an intermediate mid-plane field map, can be found in DIPOLE[S] .

The extent of the map is defined by the following parameters, as shown in Figs. 1A and 1B,
AT : total angular aperture
RM : mean radius used for the positioning of field boundaries
RMIN, RMAX : minimum and maximum radial boundaries of the map

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of
which are determined by the following parameters,

ACENT : arbitrary angle, used for the positioning of the EFB’s.
ω : azimuth of an EFB with respect to ACENT
θ : angle of a boundary with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1, U2 : extent of the linear part of the EFB.

At any node of the map mesh, the value of the Z component of the field is calculated as

BZ = F(R, θ) ∗B0 ∗
(
1 +N ∗

(
R−RM

RM

)
+B ∗

(
R−RM

RM

)2

+G ∗
(
R−RM

RM

)3
)

(1)

where N , B and G are respectively the first, second and third order field indices and F(R, θ) is the fringe field coefficient (it
determines the “flutter” in periodic structures).

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ, is associated (Figs. 1A and 1B), and a fringe field coefficient F is calculated.
In the following λ stands for either λE (Entrance), λS (Exit) or λL (Lateral EFB).
If a node of the map mesh is at a distance of the EFB larger than λ, then F = 0 outside the field map and F = 1 inside. If a node
is inside the fringe field zone, then F is calculated as follows.

Two options are available, for the calculation of F , depending on the value of ξ.

If ξ ≥ 0, F is a second order type fringe field (Fig. 2) given by

F =
1

2

(λ− s)2

λ2 − ξ2
if ξ ≤ s ≤ λ (2)

F = 1− 1

2

(λ− s)2

λ2 − ξ2
if − λ ≤ s ≤ −ξ (3)

where s is the distance to the EFB, and

F =
1

2
+

s

λ+ ξ
if 0 ≤ s ≤ ξ (4)

F =
1

2
− s

λ+ ξ
if − ξ ≤ s ≤ 0 (5)

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field when extrapolating
out of the median plane, due to the discontinuity of d2B/ds2, at s = ±ξ and s = ±λ. For better accuracy it is advised to use the
next option.
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Figure 1: A : Parameters used to define the field map and geometrical boundaries.
B : Parameters used to define the field map and fringe fields.
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If ξ = −1, F is an exponential type fringe field (Fig. 2) given by [?]

F =
1

1 + expP (s)
(6)

where s is the distance to the EFB, and

P (s) = C0 + C1

( s
λ

)
+ C2

( s
λ

)2
+ C3

( s
λ

)3
+ C4

( s
λ

)4
+ C5

( s
λ

)5
(7)

The values of the coefficients C0 to C5 should be such that the derivatives of BZ with respect to s be negligible at s = ±λ, so as
not to perturb the extrapolation of ~B out of the median plane.
It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. s is then changed to s− shift
in the previous equation. This allows small variations of the total magnetic length.
Let FE (respectively FS , FL) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB following the
equations above. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 1) is (Fig. 3)

F(R, θ) = FE ∗ FS ∗ FL

In particular, FL ≡ 1 if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

δR =
RMAX - RMIN

IRMAX − 1

and the angular step by

δθ =
AT

IAMAX − 1

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular aperture (Fig. 1B).
IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to perturb it by means of the parameter NBS, so as to simulate field defects or
shims.

If NBS = −2, the map is globally modified by a perturbation proportional to R −R0, where R0 is an arbitrary radius, with an
amplitude ∆BZ/B0, so that BZ at the nodes of the mesh is replaced by

BZ ∗
(
1 +

∆BZ

B0

R−R0

RMAX − RMIN

)

If NBS = −1, the perturbation is proportional to θ − θ0, and BZ is replaced by

BZ ∗
(
1 +

∆BZ

B0

θ − θ0
AT

)
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If NBS ≥ 1, then NBS shims are introduced at positions
R1 +R2

2
,
θ1 + θ2

2
(Fig. 4) [?]

The initial field map is modified by shims with second order profiles given by

θ =

(
γ +

α

µ

)
β
X2

ρ2

where X is shown in Fig. 4, ρ =
R1 +R2

2
is the central radius, α and γ are the angular limits of the shim, β and µ are parameters.

At each shim, the value of BZ at any node of the initial map is replaced by

BZ ∗
(
1 + Fθ ∗ FR ∗ ∆BZ

B0

)

where Fθ = 0 or FR = 0 outside the shim, and Fθ = 1 and FR = 1 inside.

Extrapolation Off Median Plane

The vertical field ~B and its derivatives in the median plane are calculated by means of a second or fourth order polynomial
interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, see section ??). The transformation from
polar to Cartesian coordinates is performed following eqs. (?? or ??). Extrapolation off median plane is then performed by means
of Taylor expansions following the procedure described in section ??.

Figure 4: A second order profile shim. The shim is centered at
(R1 +R2)

2
and

(θ1 + θ2)

2
.
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AIMANT Generation of dipole mid-plane 2-D map, polar frame
BZ = FB0

(
1−N

(
R−RM
RM

)
+B

(
R−RM
RM

)2
+G

(
R−RM
RM

)3)

NFACE, IC, IL Number of field boundaries 2-3, 0-2, 0-2[×10n] 3*I
IC = 1, 2 : print field map
IL = 1, 2[×10n] : print field and coordinates along trajectories.

IAMAX, IRMAX Azimuthal and radial number of nodes of the mesh ≤ 400, ≤ 104 2*I

B0, N, B, G Field and field indices kG, 3*no dim. 4*E

AT, ACENT, RM, Mesh parameters : total angle of the map ; azimuth for EFBs 2*deg, 3*cm 5*E
RMIN, RMAX positioning ; reference radius ; minimum and maximum radii

ENTRANCE FIELD BOUNDARY

λ, ξ Fringe field extent (normally ≃ gap size) ; flag : cm, (cm) 2*E
- if ξ ≥ 0 : second order type fringe field with
linear variation over distance ξ
- if ξ = −1 : exponential type fringe field :
F = (1 + exp(P (s)))−1

P (s) = C0 + C1(
s
λ ) + C2(

s
λ )

2 + ...+ C5(
s
λ )

5

NC, C0 − C5, shift NC = 1 + degree of P (s) ; C0 to C5 : see above ; 0-6, 6*no dim., cm I, 7*E
EFB shift (ineffective if ξ ≥ 0)

ω+, θ, R1, U1, U2, R2 Azimuth of entrance EFB with respect to ACENT ; 2*deg, 4*cm 6*E
wedge angle of EFB ; radii and linear
extents of EFB (use | U1,2 |= ∞ when R1,2 = ∞)

(Note : λ = 0, ω+ = ACENT and θ = 0 for sharp edge)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

λ, ξ Fringe field parameters cm, (cm) 2*E
NC, C0 − C5, shift 0-6, 6*no dim., cm 1, 7*E
ω−, θ, R1, U1, U2, R2 Positioning and shape of the exit EFB 2*deg, 4*cm 6*E

(Note : λ = 0, ω− =-AT+ACENT and θ = 0 for
sharp edge)
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If NFACE = 3 LATERAL FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)
Next 3 records only if NFACE = 3

λ, ξ Fringe field parameters cm, (cm) 2*E
NC, C0 − C5, shift 0-6, 6*no dim., cm I, 7*E
ω−, θ, R1, U1, U2, R2, Positioning and shape of the lateral EFB ; 2*deg, 5*cm 7*E
RM3 RM3 is the radial position on azimuth ACENT

NBS Option index for perturbations to the field map -2− 0 or ≥ 1 I

If NBS = 0 Normal value. No other record required

If NBS = -2 The map is modified as follows :

R0, ∆B/B0 B transforms to B ∗
(
1 + ∆B

B0

R−R0

RMAX−RMIN

)
cm, no dim. 2*E

If NBS = -1 the map is modified as follows :

θ0, ∆B/B0 B transforms to B ∗
(
1 + ∆B

B0

θ−θ0
AT

)
deg, no dim. 2*E

If NBS ≥ 1 Introduction of NBS shims

For I = 1, NBS The following 2 records must be repeated NBS times

R1, R2, θ1, θ2, λ Radial and angular limits of the shim ; λ is unused 2*cm, 2*deg, cm 5*E

γ, α, µ, β geometrical parameters of the shim 2*deg, 2*no dim. 4*E

IORDRE Degree of interpolation polynomial : 2, 25 or 4 I
2 = second degree, 9-point grid
25 = second degree, 25-point grid
4 = fourth degree, 25-point grid

XPAS Integration step cm E

KPOS Positioning of the map, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the map.

If KPOS = 1 Automatic positioning of the map, by means of
DP reference relative momentum no dim. E
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AUTOREF : Automatic transformation to a new reference frame

AUTOREF positions the new reference frame following 3 options :

If I = 1, AUTOREF is equivalent to

CHANGREF [XCE = 0, Y CE = Y (1), ALE = T (1)]

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal angle set to T = 0.

If I = 2, it is equivalent to

CHANGREF [XW,YW, T (1)]

so that the new reference frame is at the position (XW,YW ) of the waist (calculated automatically in the same way as for
IMAGE ) of the three rays number 1, 4 and 5 (compatible for instance with OBJET, KOBJ = 5, 6, together with the use of
MATRIX ) while T (1), the horizontal angle of particle number I1, is set to zero.

If I = 3, it is equivalent to

CHANGREF [XW,YW, T (I1)]

so that the new reference frame is at the position (XW,YW ) of the waist (calculated automatically in the same way as for
IMAGE ) of the three rays number I1, I2 and I3 specified as data, while T (I1) is set to zero.

1



AUTOREF Automatic transformation to a new reference frame

I 1 : Equivalent to CHANGREF (XCE = 0, Y CE = Y (1), ALE = T (1)) 1-2 I

2 : Equivalent to CHANGREF (XW , YW , T (1)), with (XW , YW )
being the location of the intersection (waist) of particles 1, 4 and 5
(useful with MATRIX , for automatic positioning of the first order focus)

3 : Equivalent to CHANGREF (XW , YW , T (I1)), with (XW , YW )
being the location of the intersection (waist) of particles I1, I2 and I3
(for instance : I1 = central trajectory, I2 and I3 = paraxial trajectories
that intersect at the first order focus)

If I = 3 Next record only if I = 3
I1, I2, I3 Three particle numbers 3*(1-IMAX) 3*I
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BEAMBEAM : Beam-beam lens

BEAMBEAM is a beam-beam lens simulation, a point transform [?].

Upon option using SPNTRK, BEAMBEAM will include spin kicks, after modelling as described in Ref. [?].
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BEAMBEAM Beam-beam lens

SW, I 0/1 : off/on ; beam intensity. 0-2, Amp I, E
Use SPNTRK to activate spin kicks.

αY , βY , ǫY,norm/π Beam parameters, horizontal. - , m, m.rad 3*E

αZ , βZ , ǫZ,norm/π Beam parameters, vertical. - , m, m.rad 3*E

σX , σdp/p rms bunch length ; rms momentum spread. m, - 2*E

C, α Ring circumference ; momentum compaction. m, - 2*E

QY , QZ , Qs Tunes, horizontal, vertical, synchrotron. -, -, - 3*E

AY , AZ , AX Amplitudes, horizontal, vertical, longitudinal. -, -, - 3*E

2



BEND : Bending magnet, Cartesian frame

BEND is one of several keywords available for the simulation of dipole magnets. It presents the interest of easy handling, and is
well adapted for the simulation of synchrotron dipoles and such other regular dipoles as sector magnets with wedge angles.

The field in BEND is defined in a Cartesian coordinate frame (unlike for instance DIPOLE[S] that uses a polar frame). As a
consequence, having particle coordinates at entrance or exit of the magnet referring to the curved main direction of motion may
require using KPOS, in particular KPOS=3 (in a circular machine cell for instance, see section ??, p. ??).

The dipole simulation accounts for the magnet geometrical length XL, for a possible skew angle (X-rotation, useful for obtaining

vertical deviation magnet), and for the field B1 such that in absence of fringe field the deviation θ satisfies XL = 2
BORO
B1

sin θ/2.

Then follows the description of the entrance and exit EFB’s and fringe fields. The wedge angles WE (entrance) and WS (exit)
are defined with respect to the sector angle, with the signs as described in Fig. 1. Within a distance ±XE(±XS) on both sides of
the entrance (exit) EFB, the fringe field model is used (same as for QUADRUPO, Fig. ??, p. ??) ; elsewhere, the field is supposed
to be uniform.

If λE (resp. λS) is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and XE (resp. XS) is forced to
zero. In this case, the wedge angle vertical first order focusing effect (if ~B1 is non zero) is simulated at magnet entrance and exit
by a kick P2 = P1 − Z1 tan(ǫ/ρ) applied to each particle (P1, P2 are the vertical angles upstream and downstream the EFB, Z1

the vertical particle position at the EFB, ρ the local horizontal bending radius and ǫ the wedge angle experienced by the particle ;
ǫ depends on the horizontal angle T).

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic struc-
tures (section ??).

XL

EFB
Entrance

Exit
EFB

SX

Xreference

W  > 0E

θ

W  > 0S

trajectory

0

XE

Y

Figure 1: Geometry and parameters of BEND : XL = length, θ = deviation, WE , WS

are the entrance and exit wedge angles. The motion is computed in the
Cartesian frame (O,X, Y, Z)
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BEND Bending magnet, Cartesian frame

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, Sk, B1 Length ; skew angle ; field cm, rad, kG 3*E

Entrance face :
XE, λE, WE Integration zone extent ; fringe field extent (normally cm, cm, rad 3*E

≃ gap height ; zero for sharp edge) ; wedge angle

N , C0–C5 Unused ; fringe field coefficients : B(s) = B1F (s) with unused, 6*no dim. I, 6*E
F (s) = 1/(1 + exp(P (s)) and P (s) =

∑5
i=0 Ci(s/λ)

i

Exit face :
XS , λS , WS See entrance face cm, cm, rad 3*E

N , C0–C5 unused, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, YCE, ALE KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
shifts, tilt (unused if KPOS=1)
KPOS = 3 :
entrance and exit frames are shifted by YCE
and tilted wrt. the magnet by an angle of
• either ALE if ALE6=0
• or 2Arcsin(B1XL / 2BORO) if ALE=0

XL

EFB
Entrance

Exit
EFB

SX

Xreference

W  > 0E

θ

W  > 0S

trajectory

0

XE

Y

Geometry and parameters of BEND : XL = length,
θ = deviation, WE , WS are the entrance and exit wedge
angles. The motion is computed in the Cartesian frame
(O,X, Y, Z)
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BINARY : BINARY/FORMATTED data converter

This procedure translates field map data files from “BINARY” to “FORMATTED” – in the FORTRAN sense, or the other way.

The keyword is followed by, next data line,

NF [.J ], NCOL,NHDR

the number of files to be translated [READ format option, a single digit integer, optional], number of data columns in the file,
number of header lines in the file.

If J is not given, the NCOL arrangement should be consistent with the following FORTRAN READ statement :
READ (unit=ln,*) (X7(I),I=1,NCOL)

If J = 1, NCOL should be consistent with the following FORTRAN READ statement :
READ (unit=ln,fmt=’(1x,ncol*E11.2)’) (X7(I),I=1,NCOL)

Then follow, line by line, the NF names of the files to be translated.

Iff a file name begins with the prefix “B ” or “b ”, it is assumed “binary”, and hence converted to “formatted”, and given the
same name after suppression of the prefix “B ” or “b ”. Conversely, iff the file name does not begin with “B ” or “b ”, the file is
presumed “formatted” and hence translated to “binary”, and is given the same name after addition of the prefix “b ”.

In its present state, the procedure BINARY only supports a limited number of read/write formats. Details concerning I/O
formatting can be found in the FORTRAN file ’binary.f’.
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BINARY BINARY/FORMATTED data converter

NF [.J ], NCol, NHDR Number of files to convert [READ format type, see below], ≤ 20, ≥ 1 , 0− 9 3*I1
of data columns, of header lines.

The next NF lines :
FNAME Name of the file to be converted. File content is assumed binary A80

iff name begins with “B ” or “b ”, assumed formatted otherwise.

READ format :

If FRM not given Format is ’*’
If FRM=1 Format is ’1X,7E11.*’
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BREVOL : 1-D uniform mesh magnetic field map

BREVOL reads a 1-D axial field map from a storage data file, whose content must match the following FORTRAN reading
sequence (possible FORMAT updates are to be found in fmapw.f).

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), BX(I)
ELSE
READ(NL,*) X(I), BX(I)
ENDIF
1 CONTINUE

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and BX(I) are the values of the X
component of the field. BX is normalized with BNORM factor prior to ray-tracing, as well X is normalized with the coefficient
XNORM (useful to convert to centimeters, the working units in zgoubi). For binary files, FNAME must begin with ‘B ’ or
‘b ’, a flag ‘BINARY’ will thus be set to ‘.TRUE.’ by the FORTRAN.

X-cylindrical symmetry is assumed, resulting in BY and BZ taken to be zero on axis. ~B(X,Y, Z) and its derivatives along a
particle trajectory are calculated by means of a 5-point polynomial interpolation followed by second order off-axis extrapolation
(see sections ??, ??).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag ID and
coefficients A, B, C, etc.
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BREVOL 1-D uniform mesh magnetic field map
X-axis cylindrical symmetry is assumed

IC, IL IC = 1, 2 : print the map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories.

BNORM, XN Field and X-coordinate normalization coeff. 2*no dim. 2*E

TITL Title. Start with “FLIP” to get field map X-flipped. A80

IX Number of longitudinal nodes of the map ≤ 400 I

FNAME [, SUM] 1, 2 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Unused 2, 25 or 4 I

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 FNAME (e.g., solenoid.map) contains the field data. These must be formatted according to the following FORTRAN sequence :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), BX(I)
ELSE
READ(NL,*) X(I), BX(I)
ENDIF
1 CONTINUE

where X(I) and BX(I) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names must be-
gin with FNAME ’B ’ or ’b ’. ‘Binary’ will then automatically be set to ‘.TRUE.’.

2 Sumperimposing (summing) field maps is possible. To do so, pile up file names with ’SUM’ following each name but the last one. e.g., in the following ex-
ample, 3 field maps are read and summed :

myMapFile1 SUM
myMapFile2 SUM
myMapFile3

(all maps must all have their mesh defined in identical coordinate frame).
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CARTEMES : 2-D Cartesian uniform mesh magnetic field map

CARTEMES was originally dedicated to the reading and processing of the measured median plane field maps of the QDD
spectrometer SPES2 at Saclay, assuming mid-plane dipole symmetry. However, it can be used for the reading of any 2-D median
plane maps, provided that the format of the field data storage file fits the following FORTRAN sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,FMT=’(10F8.2)’) (Y(J), J=1, JY)
ENDIF
DO 1 I=1, IX
IF (BINARY) THEN
READ(NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,FMT=’(10F8.1)’) X(I), (BMES(I,J), J=1, JY)
ENDIF
1 CONTINUE

where, IX and JY are the number of longitudinal and transverse horizontal nodes of the uniform mesh, and X(I), Y (J) their
coordinates. FNAME is the name of the file containing the field data. For binary files, FNAME must begin with ‘B ’ or ‘b ’, a
flag ‘BINARY’ will thus be set to ‘.TRUE.’ by the FORTRAN.

The measured field BMES is normalized with BNORM,

B(I, J) = BMES(I, J)× BNORM

As well the longitudinal coordinate X is normalized with a XNORM coefficient (useful to convert to centimeters, the working
units in zgoubi).
The vector field, ~B, and its derivatives out of the median plane are calculated by means of a second or fourth order polynomial
interpolation, depending on the value of the parameter IORDRE (IORDRE = 2, 25 or 4, see section ??).

In case a particle exits the mesh, its IEX flag is set to −1 (see section ??, p. ??), however it is still tracked with the field being
extrapolated from the closest nodes of the mesh. Note that such extrapolation process may induce erratic behavior if the distance
from the mesh gets too large.

Entrance and/or exit integration boundaries can be defined with the flag ID, as follows (Fig. 1).

If ID = 1 : the integration in the field is terminated on a boundary with equation A′X+B′Y +C ′ = 0, and then the trajectories
are extrapolated linearly onto the exit border of the map.

If ID = −1 : an entrance boundary is defined, with equation A′X+B′Y +C ′ = 0, up to which trajectories are first extrapolated
linearly from the map entrance border, prior to being integrated in the field.

If ID ≥ 2 : one entrance boundary, and ID − 1 exit boundaries are defined, as above. The integration in the field terminates on
the last (ID − 1) exit boundary. No extrapolation onto the map exit border is performed in this case.

1



Figure 1: OXY is the coordinate system of the mesh. Integration boundaries may be defined, using ID 6= 0 :
particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary A′X+
B′Y + C ′ = 0 ; after ray-tracing inside the map and terminating on the boundary AX +BY + C = 0,
coordinates are extrapolated linearly onto the exit face of the map if ID = 2, or terminated on the last
(ID − 1) boundary if ID > 2.
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CARTEMES 2-D Cartesian uniform mesh magnetic field map
mid-plane symmetry is assumed

IC, IL IC = 1, 2 : print the map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories.

BNORM, XN,YN Field and X-,Y-coordinate normalization coeffs. 3*no dim. 3*E

TITL Title. Start with “FLIP” to get field map X-flipped. A80

IX , JY Number of longitudinal (IX) and transverse (JY ) ≤ 400, ≤ 200 2*I
nodes of the map

FNAME 1 File name A80

ID, A, B, C Integration boundary. Normally ID = 0. ≥ −1,2*no dim., I, 3*E
[, A′ , B′, C ′, A′′, ID = −1 : integration in the map begins at cm [,2*no dim., [3*E,etc.]
B′′,etc., if ID ≥ 2] entrance boundary defined by AX +BY + C = 0. cm, etc.]

ID = 1 : integration in the map is terminated
at exit boundary defined by AX +BY + C = 0.
ID ≥ 2 : entrance (A,B,C) and up to ID − 1 exit
(A′, B′, C ′, A′′, B′′, etc.) boundaries

IORDRE Degree of interpolation polynomial (see DIPOLE-M ) 2, 25 or 4 I

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

2 FNAME (e.g., spes2.map) contains the field data. These must be formatted according to the following FORTRAN sequence :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,100) (Y(J), J=1, JY)
ENDIF
100 FORMAT(10 F8.2)
DO 1 I=1,IX
IF (BINARY) THEN
READ(NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.2)
ENDIF
1 CONTINUE

where X(I) and Y (J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J) of the mesh. For bi-
nary files, FNAME must begin with ’B ’ or ’b ’.

‘Binary’ will then automatically be set to ‘.TRUE.’
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CAVITE : Accelerating cavity

CAVITE provides a simulation of a (zero length) accelerating cavity ; it can be used in conjunction with keywords REBELOTE
and SCALING for the simulation of multi-turn tracking with synchrotron or fixed field (FFAG, cyclotron) acceleration (see
section ??). It must be preceded by PARTICUL for the definition of mass M and charge q.

A major effect of CAVITE on optics settings is the following :

The reference rigidity of a problem, as used when computing optical strengths from field values, sections ??-??, is specified
in the object definition by [MC]OBJET. However, in many cases – options as described below – that reference rigidity will be
updated upon crossing the cavity, by the amount of the synchronous rigidity increase as induced by the cavity, namely,

Bρref = BORO −→ Bρref = BORO + δBρs

Note as an illustration of the process, that, in this case, a simple way to have the optical elements have their strengths maintained
constant is to use SCALING with the option NTIM = −1.

If IOPT = 0 : CAVITE is switched off.

If IOPT = 1 : CAVITE simulates the RF cavity of a synchrotron accelerator : the periodic motion over IP = 1, NPASS + 1
turns (passes through the structure) is obtained using the keyword REBELOTE, option K = 99, while RF and optical elements
time dependent functions are simulated by means of SCALING – see section ??. CAVITE may conveniently be located at the
end of the optical structure, otherwise its phasing has to be indicated. The synchrotron motion of any of the IMAX particles of a
beam is obtained from the following mapping





φ2 − φ1 = 2π fRF

(
ℓ

βc
− L

βsc

)

W2 −W1 = qV̂ sinφ1

where
φ = RF phase ; φ2 − φ1 = variation of φ between two traversals
W = kinetic energy ; W2 −W1 = energy gain at a traversal of CAVITE
L = length of the synchronous closed orbit (to be calculated by prior ray-tracing,

see the bottom NOTE)
ℓ = orbit length of the particle between two traversals
βsc = velocity of the (virtual) synchronous particle
βc = velocity of the particle
V̂ = peak RF voltage
q = particle electric charge.

The RF frequency fRF is a multiple of the synchronous revolution frequency, and is obtained from the input data, following

fRF =
hc

L
q(Bρ)s√

q2(Bρ)2s + (Mc)2

where
h = harmonic number of the R.F
M = mass of the particle
c = velocity of light.

The current rigidity (Bρ)s of the synchronous particle is obtained from the timing law specified by means of SCALING following
(Bρ)s = BORO · SCALE(TIMING) (see SCALING for the meaning and calculation of the scale factor SCALE(TIMING) ). If
SCALING is not used, (Bρ)s is assumed to keep the constant value BORO as given in the object description (see OBJET for
instance).
The velocity βc of a particle is calculated from its current rigidity

β =
q(Bρ)√

q2(Bρ)2 + (Mc)2

The velocity βsc of the synchronous particle is obtained in the same way from

βs =
q(Bρ)s√

q2(Bρ)2s + (Mc)2

The kinetic energies and rigidities involved in these formulae are related by

q(Bρ) =
√

W (W + 2Mc2)

Finally, the initial conditions for the mapping, at the first turn, are the following
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- For the (virtual) synchronous particle

φ1 = φs = synchronous phase
(Bρ)1s = BORO

- For any of the I = 1, IMAX particles of the beam

φ1I = φs = synchronous phase
(Bρ)1I = BORO ∗DI

where the quantities BORO and DI are given in the object description.

Calculation of the Coordinates Let pI =
[
p2XI + p2Y I + p2ZI

]1/2
be the momentum of particle I at the exit of the cavity, while

pI0 =
[
p2XI0 + p2Y I0

+ p2ZI0

]1/2
is its momentum at the entrance. The kick in momentum is assumed to be fully longitudinal,

resulting in the following relations between the coordinates at the entrance (denoted by the index zero) and at the exit

pXI =
[
p2I − (p2I0 − p2XI0)

]1/2

pY I = pY I0 , and pZI = pZI0 (longitudinal kick)
XI = XI0 , YI = YI0 and ZI = ZI0 (zero length cavity)

and for the angles (see Fig. ??)

TI = Atg
(
pY I

pXI

)

PI = Atg
(

PZI

(p2XI + p2Y I)
1/2

)





(damping of the transverse motion)

If IOPT = 2 : the same simulation of a synchrotron RF cavity as for IOPT = 1 is performed, except that the keyword
SCALING (family CAVITE ) is not taken into account in this option : the increase in kinetic energy at each traversal, for the
synchronous particle, is

∆Ws = qV̂ sinφs

where the synchronous phase φs is given in the input data. From this, the calculation of the law (Bρ)s and the RF frequency fRF

follows, according to the formulae given in the IOPT = 1 case.

If IOPT = 3 : sine RF law, acceleration without synchrotron motion. Any particle will be given a kick

∆W = qV̂ sinφs

where V̂ and φs are input data.

If IOPT = 6 : allows reading the RF frequency and/or phase law from an external file (wih name normally “zgoubi.freqLaw.In”).
See routines cavite.f and scalin.f for details Was first used for acceleration in scaling FFAG [?].

If IOPT = 7 : fixed frequency RF, quasi- or isochronous acceleration. Was first used for quasi-isochronous, fixed frequency
acceleration in the EMMA prototype linear FFAG [?, ?].
Can be used for cyclotron acceleration.

NOTE. Calculation of the closed orbit :

Due to possible dipole type of optical defects (e.g., fringe fields, straight axis combined function dipoles), the closed orbit may
not coincide with the ideal axis of the optical elements (hence it will be almost everywhere non-zero). One way to calculate
it at the beginning of the structure (i.e., where the initial particle coordinates are defined) is to ray-trace a single particle over
a sufficiently large number of turns, starting with initial conditions taken near the reference orbit, so as to obtain statistically
well-defined transverse phase-space ellipses. The local closed orbit coincides with the coordinates Yc, Tc, Zc, Pc of the center of
the ellipses. A few iterations are usually sufficient (avoid near-integer tunes) to ensure accuracy. Next, ray-tracing over one turn
a particle starting with the initial condition (Yc, Tc, Zc, Pc) will provide the entire closed orbit, and as a sub-product its length L
(the F (6, 1) coordinate in the FORTRAN ).
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CAVITE 1 Accelerating cavity
∆W = qV sin(2πhf∆t+ ϕs) and other voltage and frequency laws.

IOPT[.i] Option. i = 1 causes info output into zgoubi.CAVITE.out 0-7 I

If IOPT=0 Element inactive

X , X Unused
X , X Unused

If IOPT=1 2 fRF follows the timing law given by SCALING

L, h Reference closed orbit length ; harmonic number m, no dim. 2*E
V̂ , X R.F. peak voltage ; unused V, unused 2*E

If IOPT=2 fRF follows ∆Ws = qV̂ sinφs

L, h Reference closed orbit length ; harmonic number m, no dim. 2*E
V̂ , φs R.F. peak voltage ; synchronous phase V, rad 2*E

If IOPT=3 No synchrotron motion : ∆W = qV̂ sinφs

X , X Unused ; unused 2*unused 2*E
V̂ , φs R.F. peak voltage ; synchronous phase V, rad 2*E

If IOPT=6 Read RF frequency and/or phase law from external file, “zgoubi.freqLaw.In”.

L, Ek Orbit length and kinetic energy at start of acceleration. m, MeV 2*E
V̂ , Φs R.F. peak voltage ; synchronous phase. V, rad 2*E

If IOPT=7 Quasi- or isochronous acceleration.

X , Ek Unused ; RF frequency ; - , Hz 2*E
V̂ , Φs R.F. peak voltage ; synchronous phase. V, rad 2*E

1 Use PARTICUL to declare mass and charge.
2 For ramping the R.F. frequency following Bρ(t), use SCALING, with family CAVITE.
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CHAMBR : Long transverse aperture limitation

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the vacuum chamber.
The chamber can be either rectangular (IFORM = 1) or elliptic (IFORM = 2). The chamber is centered at YC, ZC and has
transverse dimensions ±Y L and ±ZL such that any particle will be stopped if its coordinates Y,Z satisfy

(Y − YC)2 ≥ Y L2 or (Z − ZC)2 ≥ ZL2 if IFORM = 1

(Y − YC)2

Y L2
+

(Z − ZC)2

ZL2
≥ 1 if IFORM = 2

The conditions introduced with CHAMBR are valid along the optical structure until the next occurrence of the keyword
CHAMBR. Then, if IL = 1 the aperture is possibly modified by introducing new values of YC, ZC, Y L and ZL, or, if IL = 2
the chamber ends and information is printed concerning those particles that have been stopped.

The testing is done in optical elements at each integration step, between the EFB ’s. For instance, in QUADRUPO there will be
no testing from −XE to 0 and from XL to XL + XS , but only from 0 to XL ; in DIPOLE, there is no testing as long as the
ENTRANCE EFB is not reached, and testing is stopped as soon as the EXIT or LATERAL EFB ’s are passed.

In optical elements defined in polar coordinates, Y stands for the radial coordinate (e.g., DIPOLE, see Figs. ??C, p. ??, and ??,
p. ??). Thus, centering CHAMBR at
Y C = RM simulates a chamber curved with radius RM, and having a radial acceptance RM±YL. In DRIFT, the testing is done
at the beginning and at the end, and only for positive drifts. There is no testing in CHANGREF.

When a particle is stopped, its index IEX (see OBJET and section ??) is set to the value -4, and its actual path length is stored in
the array SORT for possible further use.
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CHAMBR Long transverse aperture limitation 1

IA 0 : element inactive
1 : (re)definition of the aperture 0-2 I
2 : stop testing and reset counters, print
information on stopped particles.

IFORM[.J], C1, C2, IFORM = 1 : rectangular aperture ; 1-2[.0-1] I[.I], 4*E
C3, C4 IFORM = 2 : elliptical aperture.

J = 0, default : opening is 2 ±YL = ±C1, ±ZL = ±C2,
centered at YC = C3, ZC = C4.
J = 1 : opening is 2, in Y : [C1, C2], in Z : [C3, C4]

1 Any particle out of limits is stopped.
2 When used with an optical element defined in polar coordinates (e.g., DIPOLE ) Y L is the radius and Y C stands for the reference radius (normally,

Y C ≃ RM ).
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CHANGREF : Transformation to a new reference frame

CHANGREF transports particles from a reference plane (O, Y, Z) at path distance S, to a new one by a combination of transla-
tions and/or rotations. It essentially aims at positioning optical elements with respect to one another, as setting a reference frame
at the entrance or exit of field maps, or to simulate misalignments (see also KPOS option). CHANGREF can be placed anywhere
in a structure.

Spin tracking, particle decay and gas-scattering are taken into account in CHANGREF. Energy loss by synchrotron radiation
(SRLOSS keyword) is not.

There are two “styles” of CHANGREF, as follows.

The “old style” CHANGREF requires the three data XCE, YCE, ALE and then gets the new particle coordinates Y2, T2, Z2,
P2 and path length S2 from the old ones Y1, T1, Z1, P1 and S1 using

T2 = T1 − ALE

Y2 =
(Y1 − Y CE) cosT1 +XCE sinT1

cosT2

DL2 = (XCE − Y2 sinALE)2 + (Y CE − Y1 + Y2 cosALE)2

Z2 = Z1 +DLtgP1

S2 = S1 +
DL

cosP1

P2 = P1

Figure 1: Scheme of the CHANGREF procedure.

where, XCE and Y CE are shifts in the horizontal plane along, respectively, X- and Y -axis, and ALE is a rotation around the
Z-axis. DL is given the sign of XCE − Y2 sin(ALE).

The example below shows the use of CHANGREF for the symmetric positioning of a combined function dipole+quadrupole
magnet in a drift-bend-drift geometry with 12.691 degrees deviation (obtained upon combined effect of a dipole component and
of quadrupole axis shifted 1 cm off optical axis).

Zgoubi data file :

Using CHANGREF, "Old style"
’OBJET’
51.71103865921708 Electron, Ekin=15MeV.
2
1 1 One particle, with
2. 0. 0.0 0.0 0.0 1. ’R’ Y_0=2 cm, other coordinates zero.
1 1 1 1 1 1 1
’MARKER’ BEG .plt -> list into zgoubi.plt.
’DRIFT’ 10 cm drift.
10.
’CHANGREF’
0. 0. -6.34165 First : half Z-rotation.
’CHANGREF’
0. 1. 0. Next : Y-shift.
’MULTIPOL’ Combined function multipole, dipole + quadrupole.
2 -> list into zgoubi.plt.
5 10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0.
’CHANGREF’
0. -1. -6.34165 First : Y-shift back ; next : half Z-rotation.
’DRIFT’ 10 cm drift.
10.
’MARKER’ END .plt ".plt" => list into zgoubi.plt.
’FAISCEAU’
’END’

0.0 0.05 0.1 0.15 0.2 0.25

-.1

-.05

0.0

0.05

0.1

Zgoubi|Zpop                                                           Y_Lab (m)  vs.  X_Lab (m)                                                        

  Trajectory                                         

      Optical                                                   a                  x                   i                    s      

Note : The square markers scheme the stepwise integration in
case of ±5 cm additional fringe field extent upstream and down-
stream of the 5 cm long multipole.

The “new style” CHANGREF allows all 6 degrees of freedom rather than just 3, namely, X-, Y-, Z-shift, X-, Y-, Z-rotation.
In addition, CHANGREF “new style” allows up to 9 successive such elementary transformations, in arbitrary order. The “old
style” example above is transposed into “new style”, hereafter.
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Zgoubi data file :

Using CHANGREF, "New Style"
’OBJET’
51.71103865921708 Electron, Ekin=15MeV.
2
1 1 One particle, with
2. 0. 0.0 0.0 0.0 1. ’R’ Y_0=2 cm, other coordinates zero.
1 1 1 1 1 1 1
’MARKER’ BEG .plt -> list into zgoubi.plt.
’DRIFT’ 10 cm drift.
10.
’CHANGREF’
ZR -6.34165 YS 1. First half Z-rotate, Next Y-shift.
’MULTIPOL’ Combined function multipole, dipole + quadrupole.
2 -> list into zgoubi.plt.
5 10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0.
’CHANGREF’
YS -1. ZR -6.34165 First Y-shift back, next half Z-rotate.
’DRIFT’ 10 cm drift.
10.
’FAISCEAU’
’END’
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CHANGREF Transformation to a new reference frame

“Old Style” (Figure below) :

XCE, YCE, ALE Longitudinal and transverse shifts, 2*cm, deg 3*E
followed by Z-axis rotation

“New Style” (example below). In an arbitrary order, up to 9 occurrences of :

XS ’val’, YS ’val’, ZS ’val’, cm or deg up to 9*(A2,E)
XR ’val’, YR ’val’, ZR ’val’

Parameters in the CHANGREF procedure.

Example :

Using CHANGREF "New Style
’OBJET’
51.71103865921708 Electron, Ekin=15MeV.
2
1 1 One particle, with
2. 0. 0.0 0.0 0.0 1. ’R’ Y_0=2 cm, other coordinates zero.
1 1 1 1 1 1 1
’MARKER’ BEG .plt -> list into zgoubi.plt.
’DRIFT’ 10 cm drift.
10.
’CHANGREF’
ZR -6.34165 YS 1. First half Z-rotate, Next Y-shift.
’CHANGREF’
0. 1. 0.
’MULTIPOL’ Combined function multipole, dipole + quadrupole.
2 -> list into zgoubi.plt.
5 10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0.
’CHANGREF’
YS -1. ZR -6.341 First Y-shift back, next half Z-rotate.
’DRIFT’ 10 cm drift.
10.
’FAISCEAU’
’END’
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CIBLE, TARGET Generate a secondary beam following target interaction

M1, M2, M3, Q Target, incident and scattered particle masses ; 5*MeV
c2 , 2*deg 7*E

T2, θ, β Q of the reaction ; incident particle kinetic
energy ; scattering angle ; angle of the target

NT , NP Number of samples in T and P coordinates 2*I
after CIBLE

TS, PS, DT Sample step sizes ; tilt angle 3*mrad 3*E

BORO New reference rigidity after CIBLE kG.cm E

Scheme of the principles of CIBLE (TARGET)

A, T = position, angle of incoming particle 2 in the entrance reference frame
P = position of the interaction
B, T = position, angle of the secondary particle in the exit reference frame
θ = angle between entrance and exit frames
β = tilt angle of the target

1



COLLIMA : Collimator

COLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping of particles that
reach the aperture limits.

Physical Aperture A physical aperture can be either rectangular (IFORM = 1) or elliptic (IFORM = 2). The collimator is
centered at YC, ZC and has transverse dimensions ±Y L and ±ZL such that any particle will be stopped if its coordinates Y , Z
satisfy

(Y − YC)2 ≥ Y L2 or (Z − ZC)2 ≥ ZL2 if IFORM = 1

(Y − YC)2

Y L2
+

(Z − ZC)2

ZL2
≥ 1 if IFORM = 2

Longitudinal Phase-space Collimation COLLIMA can act as a longitudinal phase-space aperture, coordinates acted on are
selected with IFORM.J. Any particle will be stopped if its horizontal (h) and vertical (v) coordinates satisfy

(h ≤ hmin or h ≥ hmax) or (v ≤ vmin or v ≥ vmax)

wherein, h is either path length S if IFORM=6 or time if IFORM=7, and v is either 1+DP/P if J=1 or kinetic energy if J=2
(provided mass and charge have been defined using the keyword PARTICUL ).

Transverse Phase-space Collimation COLLIMA can act as a transverse phase-space aperture. Any particle will be stopped
if its coordinates satisfy

γY Y
2 + 2αY Y T + βY T

2 ≥ ǫY /π if IFORM = 11 or 14

γZZ
2 + 2αZZP + βZP

2 ≥ ǫZ/π if IFORM = 12 or 15

If IFORM=11 (respectively 12) then ǫY /π (respectively ǫZ/π) is to be specified by the user as well as αY,Z , βY,Z . If IFORM=14
(respectively 15) then αY and βY (respectively αZ , βZ) are determined by zgoubi by prior computation of the matched ellipse
to the particle population, so only ǫY,Z/π need be specified by the user.

When a particle is stopped, its index IEX (see OBJET and section ??) is set to the value -4, and its actual path length is stored in
the array SORT for possible further use with HISTO ).

1



COLLIMA Collimator 1

IA 0 : element inactive
1 : element active 0-2 I
2 : element active and print information on stopped
particles

Physical-space collimation
IFORM[.J], C1, C2, IFORM = 1 : rectangular aperture ; 1-2[.0-1] I[.I], 4*E
C3, C4 IFORM = 2 : elliptical aperture.

J = 0, default : opening is ±YL = ±C1, ±ZL = ±C2,
centered at YC = C3, ZC = C4.
J = 1 : opening is, in Y : [C1, C2], in Z : [C3, C4]

Longitudinal collimation
IFORM.J, Hmin, Hmax, IFORM = 6 or 7 for horizontal variable resply S or Time, 2*cm or 2*s, I, 4*E
Vmin, Vmax J=1 or 2 for vertical variable resply 1+dp/p, kinetic-E (MeV) ; 2*no.dim or 2*MeV

horizontal and vertical limits

Phase-space collimation
IFORM, α, β, ǫ/π, Nσ IFORM = 11, 14 : horizontal collimation ; horizontal 11-16, no.dim, I, 4*E

ellipse parameters (unused if 14) 2, emittance, cut-off 2*m, no.dim
IFORM = 12, 15 : vertical collimation ; vertical
ellipse parameters (unused if 15) 2, emittance, cut-off
IFORM = 13, 16 : longitudinal collimation ; to be
implemented

1 Any particle out of limits is stopped.
2 The rejection boundary is the rms ellipse matched to the particle distribution.
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DECAPOLE : Decapole magnet (Fig. 1)

The meaning of parameters for DECAPOLE is the same as for QUADRUPO.
In fringe field regions the magnetic field ~B(X,Y, Z) and its derivatives up to fourth order are derived from the scalar potential
expressed to the 5th order in Y and Z

V (X,Y, Z) = G(X)

(
Y 4Z − 2Y 2Z3 +

Z5

5

)

with G0 =
B0

R4
0

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. ??.

Outside fringe field regions, or everywhere in sharp edge decapole (λE = λS = 0) , ~B(X,Y, Z) in the magnet is given by

BX = 0

BY = 4G0(Y
2 − Z2)Y Z

BZ = G0(Y
4 − 6Y 2Z2 + Z4)

Figure 1: Decapole magnet

1



DECAPOLE Decapole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length ; radius and field at pole tip 2*cm, kG 3*E

Entrance face :
XE , λE Integration zone extent ; fringe field 2*cm 2*E

extent (∼< 2R0, λE = 0 for sharp edge)

NCE, C0 − C5 NCE = unused unused, I, 6*E
C0 − C5 = Fringe field coefficients such that 6*no dim.
G(s) = G0/(1 + expP (s)), with G0 = B0/R

4
0

and P (s) =
∑5

i=0 Ci(s/λ)
i

XS , λS Exit face : see entrance face 2*cm 2*E
NCS, C0 − C5 0-6, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, YCE, ALE KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
shifts, tilt (unused if KPOS=1)

2



DIPOLE : Dipole magnet, polar frame

DIPOLE provides a model of a dipole field, possibly with transverse indices. The field along a particle trajectory is computed
as the particle motion proceeds, straightforwardly from the dipole geometrical boundaries. Field simulation in DIPOLE is the
same as used in DIPOLE-M and AIMANT for computing a field map ; the essential difference in DIPOLE is in its skipping that
intermediate stage of field map generation found in DIPOLE-M and AIMANT.

DIPOLE has a version, DIPOLES, that allows overlapping of fringe fields in a configuration of neighboring magnets.

The dimensioning of the magnet is defined by (Fig. ??, p. ??)

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

The 2 or 3 effective field boundaries (EFB), from which the dipole field is drawn, are defined from geometric boundaries, the
shape and position of which are determined by the following parameters.

ACENT : arbitrary inner angle, used for EFB’s positioning
ω : azimuth of an EFB with respect to ACENT
θ : angle of an EFB with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1, U2 : extent of the linear part of an EFB.

The magnetic field is calculated in polar coordinates. At any position (R, θ) along the particle trajectory the value of the vertical
component of the mid-plane field is calculated using

BZ(R, θ) = F(R, θ) ∗B0 ∗
(
1 +N ∗

(
R−RM

RM

)
+B ∗

(
R−RM

RM

)2

+G ∗
(
R−RM

RM

)3
)

(1)

where N , B and G are respectively the first, second and third order field indices and F(R, θ) is the fringe field coefficient (it
determines the “flutter” in periodic structures).

Calculation of the Fringe Field Coefficient With each EFB a realistic extent of the fringe field, λ (normally equal to the gap
size), is associated and a fringe field coefficient F is calculated. In the following λ stands for either λE (Entrance), λS (Exit) or
λL (Lateral EFB).

F is an exponential type fringe field (Fig. ??, p. ??) given by [?]

F =
1

1 + expP (s)

wherein s is the distance to the EFB and depends on (R, θ), and

P (s) = C0 + C1

( s
λ

)
+ C2

( s
λ

)2
+ C3

( s
λ

)3
+ C4

( s
λ

)4
+ C5

( s
λ

)5

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. s is then changed to s−shift
in the previous equation. This allows small variations of the magnetic length.

Let FE (respectively FS , FL) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any
position on a trajectory the resulting value of the fringe field coefficient (eq. 1) is

F(R, θ) = FE ∗ FS ∗ FL

In particular, FL ≡ 1 if no lateral EFB is requested.

Calculation of the Mid-plane Field and Derivatives BZ(R, θ) in Eq. 1 is computed at the n × n nodes (n = 3 or 5 in
practice) of a “flying” interpolation grid in the median plane centered on the projection m0 of the actual particle position M0 as
schemed in Fig. 1. A polynomial interpolation is involved, of the form

BZ(R, θ) = A00 +A10θ +A01R+A20θ
2 +A11θR+A02R

2

that yields the requested derivatives, using

Akl =
1

k!l!

∂k+lBZ

∂θk∂rl

Note that, the source code contains the explicit analytical expressions of the coefficients Akl solutions of the normal equations,
so that the operation is not CPU time consuming.
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B

interpolation
grid

trajectory

m
0

m 1
BB

1 3

2

particleδs

Figure 1: Interpolation method. m0 and m1 are the projections in the median plane of particle
positions M0 and M1 and separated by δs, projection of the integration step.

Extrapolation Off Median Plane From the vertical field ~B and derivatives in the median plane, first a transformation from
polar to Cartesian coordinates is performed, following eqs (?? or ??), then, extrapolation off median plane is performed by means
of Taylor expansions, following the procedure described in section ??.
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DIPOLE Dipole magnet, polar frame
BZ = FB0

(
1 +N

(
R−RM
RM

)
+B

(
R−RM
RM

)2
+G

(
R−RM
RM

)3)

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

AT , RM Total angular extent of the dipole ; reference radius deg, cm 2*E

ACENT, B0, N , B, G Azimuth for positioning of EFBs ; field and field indices deg., kG, 3*no dim. 5*E

ENTRANCE FIELD BOUNDARY

λ, ξ Fringe field extent (normally ≃ gap size) ; unused. cm, unused 2*E
Exponential type fringe field F = 1 / (1 + exp(P (s)))
with P (s) = C0 + C1(

s
λ ) + C2(

s
λ )

2 + ...+ C5(
s
λ )

5

NC, C0 − C5, shift Unused ; C0 to C5 : see above ; EFB shift 0-6, 6*no dim., cm I,7*E

ω+, θ, R1, U1, U2, R2 Azimuth of entrance EFB with respect to ACENT ; 2*deg, 4*cm 6*E
wedge angle of EFB ; radii and linear
extents of EFB (use | U1,2 |= ∞ when R1,2 = ∞)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

λ, ξ Fringe field parameters cm, unused 2*E
NC, C0 − C5, shift 0-6, 6*no dim., cm 1, 7*E

ω−, θ, R1, U1, U2, R2 Positioning and shape of the exit EFB 2*deg, 4*cm 6*E

LATERAL FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

λ, ξ LATERAL EFB is inhibited if ξ = 0 cm, unused 2*E
NC, C0 − C5, shift 0-6, 6*no dim., cm 1, 7*E

ω−, θ, R1, U1, U2, R2, Positioning and shape of the exit EFB 2*deg, 5*cm 7*E
RM3

IORDRE, Resol Degree of interpolation polynomial : 2, 25 or 4 ; no dim. I, E
2 = second degree, 9-point grid
25 = second degree, 25-point grid
4 = fourth degree, 25-point grid ;
resolution of flying mesh is XPAS/Resol

XPAS Integration step cm E

KPOS Positioning of the map, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the map.

If KPOS = 1 Automatic positioning of the map, by means of
DP reference relative momentum no dim. E
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DIPOLE-M : Generation of dipole mid-plane 2-D map, polar frame

DIPOLE-M is a more recent, simpler and improved version of AIMANT.

The keyword DIPOLE-M provides an automatic generation of a dipole field map in polar coordinates. The extent of the map is
defined by the following parameters, as shown in Figs. ??A and ??B.

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries
RMIN, RMAX : minimum and maximum radii

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of
which are determined by the following parameters.

ACENT : arbitrary inner angle, used for EFB’s positioning
ω : azimuth of an EFB with respect to ACENT
θ : angle of an EFB with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1, U2 : extent of the linear part of an EFB.

At any node of the map mesh, the value of the field is calculated as

BZ(R, θ) = F(R, θ) ∗B0 ∗
(
1 +N ∗

(
R−RM

RM

)
+B ∗

(
R−RM

RM

)2

+G ∗
(
R−RM

RM

)3
)

(1)

where N , B and G are respectively the first, second and third order field indices and F is the fringe field coefficient.

Calculation of the Fringe Field Coefficient With each EFB a realistic extent of the fringe field, λ (normally equal to the gap
size), is associated and a fringe field coefficient F is calculated. In the following λ stands for either λE (Entrance), λS (Exit) or
λL (Lateral EFB).

F is an exponential type fringe field (Fig. ??) given by [?]

F =
1

1 + expP (s)

where s is the distance to the EFB, and

P (s) = C0 + C1

( s
λ

)
+ C2

( s
λ

)2
+ C3

( s
λ

)3
+ C4

( s
λ

)4
+ C5

( s
λ

)5

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. s is then changed to s−shift
in the previous equation. This allows small variations of the total magnetic length.

Let FE (respectively FS , FL) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any node
of the map mesh, the resulting value of the fringe field coefficient (eq. 1) is

F(R, θ) = FE ∗ FS ∗ FL

In particular, FL ≡ 1 if no lateral EFB is requested.

The Mesh of the Field Map The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median
plane. The radial step is given by

δR =
RMAX − RMIN

IRMAX − 1

and the angular step by

δθ =
AT

IAMAX − 1

where RMINand RMAX are the lower and upper radial limits of the field map, and AT is its total angular aperture (Fig. ??B).
IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

1



Simulating Field Defects and Shims Once the initial map is calculated, it is possible to modify it by means of the parameter
NBS, so as to simulate field defects or shims.

If NBS = −2, the map is globally modified by a perturbation proportional to R −R0, where R0 is an arbitrary radius, with an
amplitude ∆BZ/B0, so that BZ at the nodes of the mesh is replaced by

BZ ∗
(
1 +

∆BZ

B0

R−R0

RMAX - RMIN

)

If NBS = −1, the perturbation is proportional to θ − θ0, and BZ is replaced by

BZ ∗
(
1 +

∆BZ

B0

θ − θ0
AT

)

If NBS ≥ 1, then NBS shims are introduced at positions
R1 +R2

2
,
θ1 + θ2

2
(Fig. ??) [?]

The initial field map is modified by shims with second order profiles given by

θ =

(
γ +

α

µ

)
β
X2

ρ2

where X is shown in Fig. ??, ρ =
R1 +R2

2
is the central radius, α and γ are the angular limits of the shim, β and µ are

parameters.
At each shim, the value of BZ at any node of the initial map is replaced by

BZ ∗
(
1 + Fθ ∗ FR ∗ ∆BZ

B0

)

where Fθ = 0 or FR = 0 outside the shim, and Fθ = 1 and FR = 1 inside.

Extrapolation Off Median Plane The vector field ~B and its derivatives in the median plane are calculated by means of a
second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, see
section ??). The transformation from polar to Cartesian coordinates is performed following eqs (?? or ??). Extrapolation off
median plane is then performed by means of Taylor expansions, following the procedure described in section ??.
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DIPOLE-M Generation of dipole mid-plane 2-D map, polar frame
BZ = FB0

(
1 +N

(
R−RM
RM

)
+B

(
R−RM
RM

)2
+G

(
R−RM
RM

)3)

NFACE, IC, IL Number of field boundaries 2-3, 0-2, 0-2[×10n] 3*I
IC = 1, 2 : print field map
IL = 1, 2 : print field and coordinates on trajectories

IAMAX, IRMAX Azimuthal and radial number of nodes of the mesh ≤ 400, ≤ 200 2*I

B0, N , B, G Field and field indices kG, 3*no dim. 4*E

AT , ACENT, RM , Mesh parameters : total angle of the map ; azimuth for 2*deg, 3*cm 5*E
RMIN, RMAX positioning of EFBs ; reference radius ; minimum and

maximum radii

ENTRANCE FIELD BOUNDARY

λ, ξ Fringe field extent (normally ≃ gap size) ; unused. cm, unused 2*E
Exponential type fringe field F = 1 / (1 + exp(P (s)))
with P (s) = C0 + C1(

s
λ ) + C2(

s
λ )

2 + ...+ C5(
s
λ )

5

NC, C0 − C5, shift Unused ; C0 to C5 : see above ; EFB shift 0-6, 6*no dim., cm I,7*E

ω+, θ, R1, U1, U2, R2 Azimuth of entrance EFB with respect to ACENT ; 2*deg, 4*cm 6*E
wedge angle of EFB ; radii and linear
extents of EFB (use | U1,2 |= ∞ when R1,2 = ∞)

(Note : λ = 0, ω+ = ACENT and θ = 0 for sharp edge)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

λ, ξ Fringe field parameters cm, unused 2*E
NC, C0 − C5, shift 0-6, 6*nodim., cm 1, 7*E

ω−, θ, R1, U1, U2, R2 Positioning and shape of the exit EFB 2*deg, 4*cm 6*E

(Note : λ = 0, ω− = −AT+ ACENT and θ = 0 for
sharp edge)

If NFACE = 3 LATERAL FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)
Next 3 records only if NFACE = 3

λ, ξ cm, (cm) 2*E
Fringe field parameters

NC, C0 − C5, shift 0-6, 6*no dim., cm I, 7*E
ω−, θ, R1, U1, U2, R2, Positioning and shape of the lateral EFB ; 2*deg, 5*cm 7*E
RM3 RM3 is the radial position on azimuth ACENT

NBS Option index for perturbations to the field map normally 0 I

If NBS = 0 Normal value. No other record required

If NBS = -2 The map is modified as follows :

R0, ∆B/B0 B transforms to B ∗
(
1 + ∆B

B0

R−R0

RMAX−RMIN

)
cm, no dim. 2*E

If NBS = -1 the map is modified as follows :

θ0, ∆B/B0 B transforms to B ∗
(
1 + ∆B

B0

θ−θ0
AT

)
deg, no dim. 2*E
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If NBS ≥ 1 Introduction of NBS shims

For I = 1, NBS The following 2 records must be repeated NBS times

R1, R2, θ1, θ2, λ Radial and angular limits of the shim ; λ is unused 2*cm, 2*deg, cm 5*E

γ, α, µ, β geometrical parameters of the shim 2*deg, 2*no dim. 4*E

IORDRE Degree of interpolation polynomial : 2, 25 or 4 I
2 = second degree, 9-point grid
25 = second degree, 25-point grid
4 = fourth degree, 25-point grid

XPAS Integration step cm E

KPOS Positioning of the map, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the map.

If KPOS = 1 Automatic positioning of the map, by means of
DP reference relative momentum no dim. E
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DIPOLES : Dipole magnet N -tuple, polar frame [?, ?]

DIPOLES works much like DIPOLE as to the field modelling, yet with the particularity that it allows positioning up to 5 such
dipoles within the angular sector with full aperture AT thus allowing accounting for overlapping fringe fields. This is done in
the following way1.

The dimensioning of the magnet is defined by

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

For each one of the N = 1 to 5 dipoles of the N -tuple, the 2 effective field boundaries (entrance and exit EFBs) from which the
dipole field (eqs. 1, 2) is drawn are defined from geometrical boundaries, the shape and position of which are determined by the
following parameters (in the same manner as in DIPOLE, DIPOLE-M ) (see Fig. ??-A, p. ??, and Fig. 1)

ACNi : arbitrary inner angle, used for EFB’s positioning
ω : azimuth of an EFB with respect to ACN
θ : angle of an EFB with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1, U2 : extent of the linear part of an EFB

Calculation of the Field From a Single Dipole The magnetic field is calculated in polar coordinates. At all (R, θ) in the
median plane (Z = 0), the magnetic field due a single one (index i) of the dipoles of a N -tuple magnet can take either form,
upon option,

(i) BZi(R, θ) = BZ0,i Fi(R, θ)
(
1 + b1i(R−RMi)/RMi + b2i(R−RMi)

2/RM2
i + ...

)
(1)

(ii) BZ(R, θ) = BZ0,i +
∑N

i=1 Fi(R, θ)
(
b1i(R−RMi) + b2i(R−RMi)

2 + ...
)

(2)

wherein BZ0,i is a reference field, at reference radius RMi, and F(R, θ) is the fringe field coefficient, see below. This field
model is proper to simulate for instance chicane dipoles, cyclotron or FFAG magnets, etc.

ACN1

ACN3

AT

ACN2

B2

B1 B3

M

Figure 1: Definition of a dipole triplet using the DIPOLES or FFAG procedures.

Calculation of the Fringe Field Coefficient In a dipole, a realistic extent of the fringe field, g, is associated with each EFB,
and a fringe field coefficient F is calculated.

F is an exponential type fringe field (Fig. ??, page ??) given by [?]

F =
1

1 + expP (d)

wherein d is the distance to the EFB and depends on (R, θ), and

1FFAG can be referred to as another instance of a procedure based on such method.
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P (d) = C0 + C1

(
d

g

)
+ C2

(
d

g

)2

+ C3

(
d

g

)3

+ C4

(
d

g

)4

+ C5

(
d

g

)5

In addition, g is made dependent of R (a way to simulate the effect of variable gap size on fringe field extent), under the form

g(R) = g0 (RM/R)κ

This dependence is accounted for rigorously if the interpolation method (see below) is used, or else to order zero (derivatives of
g(R) are not considered) if the analytic method (below) is used.
Let FE (respectively FS) be the fringe field coefficient attached to the entrance (respectively exit) EFB ; at any position on a
trajectory the resulting value of the fringe field coefficient is taken to be

Fi(R, θ) = FE ∗ FS (3)

Calculation of the Field Resulting From all N Dipoles Now, accounting for N neighboring dipoles in an N -tuple, the
mid-plane field and field derivatives are obtained by addition of the contributions of the N dipoles taken separately, namely

BZ(R, θ) =
∑

i=1,N

BZi(R, θ) (4)

∂k+l ~BZ(R, θ)

∂θk∂rl
=

∑

i=1,N

∂k+l ~BZi(R, θ)

∂θk∂rl
(5)

Note that, in doing so it is not meant that field superposition does apply in reality, it is just meant to provide the possibility of
obtaining a realistic field shape, that would for instance closely match (using appropriate C0 − C5 sets of coefficients) 3-D field
simulations obtained from magnet design codes.

Calculation of the Mid-plane Field Derivatives Two methods have been implemented to calculate the field derivatives in
the median plane (Eq. 4), based on either analytical expressions derived from the magnet geometrical description, or classical
numerical interpolation.
The first method has the merit of insuring best symplecticity in principle and fastest tracking. The interest of the second method is
in its facilitating possible changes in the mid-plane magnetic field model BZ(R, θ), for instance if simulations of shims, defects,
or special R, θ field dependence need to be introduced.

Analytical method [?] :

The starting ingredients are, on the one hand distances to the EFBs,

d(R, θ) =
√

(x(R, θ)− x0(R, θ))2 + (y(R, θ)− y0(R, θ))2

to be computed for the two cases dEntrance, dExit, and on the other hand the expressions of the coordinates of particle position M
and its projection P on the EFB in terms of the magnet geometrical parameters, namely

x(R, θ) = cos(ACN − θ)−RM
y(R, θ) = R sin(ACN − θ)

xP (R, θ) = sin(u) (y(R, θ)− yb)/2 + xb sin2(u) + x(R, θ) cos2(u)
yP (R, θ) = sin(u) (x(R, θ)− xb)/2 + yb cos2(u) + y(R, θ) sin2(u)

with xb, yb, u parameters drawn from the magnet geometry (sector angle, wedge angle, face curvatures, etc.).

These ingredients allow calculating the derivatives
∂u+vx(R, θ)

∂θu∂rv
,

∂u+vy(R, θ)

∂θu∂rv
,

∂u+vx0(R, θ)

∂θu∂rv
,

∂u+vy0(R, θ)

∂θu∂rv
, which, in

turn, intervene in the derivatives of the compound functions
∂u+vF (R, θ)

∂θu∂rv
,

∂u+vp(R, θ)

∂θu∂rv
,

∂u+vd(R, θ)

∂θu∂rv
.

Interpolation method :

The expression BZ(R, θ) in Eq. 4 is, in this case, computed at the n×n nodes (n = 3 or 5 in practice) of a “flying” interpolation
grid in the median plane centered on the projection m0 of the actual particle position M0 as schemed in Fig. 2. A polynomial
interpolation is involved, of the form

BZ(R, θ) = A00 +A10θ +A01R+A20θ
2 +A11θR+A02R

2

2



that yields the requested derivatives, using

Akl =
1

k!l!

∂k+lB

∂θk∂rl

Note that, the source code contains the explicit analytical expressions of the coefficients Akl solutions of the normal equations,
so that the operation is not CPU time consuming.

B

interpolation
grid

trajectory

m
0

m 1
BB

1 3

2

particleδs

Figure 2: Interpolation method. m0 and m1 are the projections in the median plane of particle
positions M0 and M1 and separated by δs, projection of the integration step.

Extrapolation Off Median Plane From the vertical field ~B and derivatives in the median plane, first a transformation from
polar to Cartesian coordinates is performed, following eqs (?? or ??), then, extrapolation off median plane is performed by means
of Taylor expansions, following the procedure described in section ??.

Sharp Edge Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :
- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. ??,

ω+ = ACENT (resp. ω− = −(AT −ACENT )), together with θ = 0 at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.
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DIPOLES Dipole magnet N -tuple, polar frame
(i) BZ =

∑N
i=1 BZ0,i Fi(R, θ)

(
1 + b1i(R−RMi)/RMi + b2i(R−RMi)

2/RM2
i + ...

)

(ii) BZ = BZ0,i +
∑N

i=1 Fi(R, θ)
(
b1i(R−RMi) + b2i(R−RMi)

2 + ...
)

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

N , AT , RM Number of magnets in the N -tuple ; no dim., I, 2*E
total angular extent of the dipole ; reference radius deg, cm

Repeat N times the following sequence

ACN, δRM 1, B0, Positioning of EFBs : azimuth, RMi = RM + δRM ; field ; deg., cm, kG, 3*E, I,
ind, bi, (i = 1, ind) number of, and field coefficients (ind+ 1)*no dim. ind*E

ENTRANCE FIELD BOUNDARY

g0, κ Fringe field extent (g = g0 (RM/R)κ) cm, no dim. 2*E
Exponential type fringe field F = 1 / (1 + exp(P (s)))
with P (s) = C0 + C1(

s
g ) + C2(

s
g )

2 + ...+ C5(
s
g )

5

NC, C0 − C5, shift Unused ; C0 to C5 : see above ; EFB shift 0-6, 6*no dim., cm I,7*E

ω+, θ, R1, U1, U2, R2 Azimuth of entrance EFB with respect to ACN ; 2*deg, 4*cm 6*E
wedge angle of EFB ; radii and linear
extents of EFB (use | U1,2 |= ∞ when R1,2 = ∞)

(Note : g0 = 0, ω+ = ACENT, θ = 0 and KIRD=0 for sharp edge)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

g0, κ cm, no dim. 2*E

NC, C0 − C5, shift 0− 6, 6*no dim., cm 1, 7*E

ω−, θ, R1, U1, U2, R2 2*deg, 4*cm 6*E

(Note : g0 = 0, ω− = −AT+ ACENT, θ = 0 and KIRD=0 for sharp edge)

LATERAL FIELD BOUNDARY
to be implemented - following data not used

g0, κ cm, no dim. 2*E

NC, C0 − C5, shift 0-6, 6*no dim., cm 1, 7*E

ω−, θ, R1, U1, U2, R2, R3 2*deg, 5*cm 7*E

End of repeat

1 Non-zero δRM requires KIRD= 2, 4 or 25.
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KIRD[.n], Resol KIRD=0 : analytical computation of field derivatives ; 0, 2, 25 or 4 ; no dim. I, E
n=0 : default, BZ formula (i) above, n=1 : BZ formula (ii).
Resol = 2/4 for 2nd/4th order field derivatives computation
KIRD=2, 25 or 4 : numerical interpolation of field derivatives ;
size of flying interpolation mesh is XPAS/Resol

KIRD=2 or 25 : second degree, 9- or 25-point grid
KIRD=4 : fourth degree, 25-point grid

XPAS Integration step cm E

KPOS Positioning of the magnet, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the magnet
If KPOS = 1 Automatic positioning of the magnet, by means of
DP reference relative momentum no dim. E

5



DODECAPO : Dodecapole magnet (Fig. 1)

The meaning of parameters for DODECAPO is the same as for QUADRUPO.
In fringe field regions the magnetic field ~B(X,Y, Z) and its derivatives up to fourth order are derived from the scalar potential
approximated to the 6th order in Y and Z

V (X,Y, Z) = G(X)

(
Y 4 − 10

3
Y 2Z2 + Z4

)
Y Z

with G0 =
B0

R5
0

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. ??.

Outside fringe field regions, or everywhere in sharp edge dodecapole (λE = λS = 0) , ~B(X,Y, Z) in the magnet is given by

BX = 0

BY = G0(5Y
4 − 10Y 2Z2 + Z4)Z

BZ = G0(Y
4 − 10Y 2Z2 + 5Z4)Y

Figure 1: Dodecapole magnet
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DODECAPO Dodecapole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length ; radius and field at pole tip 2*cm, kG 3*E

Entrance face :
XE , λE Integration zone extent ; fringe field 2*cm 2*E

extent (∼< 2R0, λE = 0 for sharp edge)

NCE, C0 − C5 NCE = unused unused, I, 6*E
C0 − C5 = Fringe field coefficients such that 6*no dim.
G(s) = G0/(1 + expP (s)), with G0 = B0/R

5
0

and P (s) =
∑5

i=0 Ci(s/λ)
i

XS , λS Exit face : see entrance face 2*cm 2*E
NCS, C0 − C5 0-6, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, YCE, ALE KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
shifts, tilt (unused if KPOS=1)
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DRIFT, ESL Field free drift space

XL length cm E

Z

Z2

Z1

0

XL

Y1

P

T

Y

Y2

XL/CosT•CosP

X

1



EBMULT : Electro-magnetic multipole

EBMULT simulates an electro-magnetic multipole, by addition of electric ( ~E) and magnetic ( ~B) multipole components (dipole

to 20-pole). ~E and its derivatives
∂i+j+k ~E

∂Xi∂Y j∂Zk
(i+ j + k ≤ 4) are derived from the general expression of the multipole scalar

potential (eq. ??), followed by a
π

2n
rotation (n = 1, 2, 3, ...) (see also ELMULT ). ~B and its derivatives are derived from the

same general potential, as described in section ?? (see also MULTIPOL ).

The entrance and exit fringe fields of the ~E and ~B components are treated separately, in the same way as described under
ELMULT and MULTIPOL, for each one of these two fields. Wedge angle correction is applied in sharp edge field model if ~B1
is non zero, as in MULTIPOL. Any of the ~E or ~B multipole field component can be X-rotated independently of the others.

Use PARTICUL prior to EBMULT, for the definition of particle mass and charge.

Figure 1: An example of ~E, ~B multipole : the achromatic quadrupole
(known for its allowing null second order chromatic aberrations [?]).
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Exit face
XS , λS , S2, ..., S10 Integration zone ; as for entrance 2*cm, 9*no dim. 11*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

R1, R2, R3, ..., R10 Skew angles of magnetic field components 10*rad 10*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

2



EL2TUB : Two-tube electrostatic lens

The lens is cylindrically symmetric about the X-axis.
The length and potential of the first (resp. second) electrode are X1 and V 1 (X2 and V 2). The distance between the two
electrodes is D, and their inner radius is R0 (Fig. 1). The model for the electrostatic potential along the axis is [?]

V (X) =
V2 − V1

2
th

ωx

R0

[
+
V1 + V2

2

]
if D = 0

V (X) =
V2 − V1

2

1

2ωD/R0
ℓn

chω
x+D

R0

chω
x−D

R0

[
+
V1 + V2

2

]
if D 6= 0

(x = distance from half-way between the electrodes ; ω = 1.318 ; th = hyperbolic tangent ; ch = hyperbolic cosine) from which
the field ~E(X,Y, Z) and its derivatives are derived following the procedure described in section ?? (note that they don’t depend

on the constant term
[
V1 + V2

2

]
which disappears when differentiating).

Use PARTICUL prior to EL2TUB, for the definition of particle mass and charge.

X1

V1

X2

V2 X

R0

D

Figure 1: Two-electrode cylindrical electric lens.
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EL2TUB 1 Two-tube electrostatic lens

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

X1, D, X2, R0 Length of first tube ; distance between tubes ; 3*m 4*E
length of second tube ; inner radius

V1, V2 Potentials 2*V 2*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1) rad

X1

V1

X2

V2 X

R0

D

Two-electrode cylindrical electric lens.

1 Use PARTICUL to declare mass and charge.
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ELMIRC : Electrostatic N-electrode mirror/lens, circular slits [?]

The device works as mirror or lens, horizontal or vertical. It is made of N 2-plate electrodes and has mid-plane symmetry1.

Electrode slits are circular, concentric with radii R1, R2, ..., RN-1, D is the mirror/lens gap. The model for the mid-plane (Z = 0)
radial electrostatic potential is (after Ref. [?, p.443])

V (r) =

N∑

i=2

V i− V i−1

π
arctan

(
sinh

π(r −Ri−1)

D

)

where Vi are the potential at the N electrodes (and normally V1 = 0 refers to the incident beam energy). r is the current radius.

The mid-plane field ~E(r) and its r-derivatives are first derived by differentiation, then ~E(r, Z) and derivatives are obtained from
Taylor expansions and Maxwell relations. Eventually a transformation to the rotating frame provides ~E(X,Y, Z) and derivatives
as involved in eq. ??.
Stepwise integration starts at entrance (defined by RE, TE) of the first electrode and terminates when rotation of the reference
rotating frame (RM,X, Y ) has reached the value AT. Normally, R1−RE and R1−RS should both exceed 3D (so that potential
tails have negligible effect in terms of trajectory behavior).

Positioning of the element is performed by means of KPOS (see section ??).

Use PARTICUL prior to ELMIRC, for the definition of particle mass and charge.

D

Y

R2

R1

RM

Symmetry

axis

X

r

RS

RE

Trajectory

TE > 0

TS < 0

Mid−plane

V1 V3

Z

V2

AT/2

−AT/2

Figure 1: Electrostatic N-electrode mirror/lens, circular slits, in the case N = 3, in horizontal mirror mode.

1NOTE : in the present version of the code, the sole horizontal mirror mode is operational, and N is limited to 3.
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ELMIRC Electrostatic N-electrode mirror/lens, circular slits

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

R1, R2, AT , D Radius of first and second slits ; total deviation 4*m 4*E
angle ; gap 2*m, rad, m 4*E

V − VA, VB − V Potential difference 2*V 2*E

XPAS Integration step cm E

KPOS Normally KPOS = 2 for positioning ; 1-2 I
RE, TE, RS, TS Radius and angle at respectively entrance and exit. cm, rad, cm, rad 4*E

D

Y

R2

R1

RM

Symmetry

axis

X

r

RS

RE

Trajectory

TE > 0

TS < 0

Mid−plane

V1 V3

Z

V2

AT/2

−AT/2

Electrostatic N-electrode mirror/lens, circular slits, in the case N = 3, in horizontal mirror mode.
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ELMULT : Electric multipole

The simulation of multipolar electric field ~ME proceeds by addition of the dipolar ( ~E1), quadrupolar ( ~E2), sextupolar ( ~E3), etc.,
up to 20-polar ( ~E10) components, and of their derivatives up to fourth order, following

~ME = ~E1 + ~E2 + ~E3 + ... + ~E10

∂ ~ME

∂X
=

∂ ~E1

∂X
+

∂ ~E2

∂X
+

∂ ~E3

∂X
+ ... +

∂ ~E10

∂X

∂2ME

∂X∂Z
=

∂2 ~E1

∂X∂Z
+

∂2 ~E2

∂X∂Z
+

∂2 ~E3

∂X∂Z
+ ... +

∂2 ~E10

∂X∂Z
etc.

The independent components ~E1 to ~E10 and their derivatives up to the fourth order are calculated by differentiating the general
multipole potential given in eq. ?? (page ??), followed by a

π

2n
rotation about the X-axis, so that the so defined right electric

multipole of order n, and of strength [?, ?]

Kn =
1

2

γ

γ2 − 1

Vn

Rn
0

(Vn = potential at the electrode, R0 = radius at pole tip, γ = relativistic Lorentz factor of the particle) has the same focusing

effect as the right magnetic multipole of order n and strength Kn =
Bn

Rn−1
0 Bρ

(Bn = field at pole tip, Bρ = particle rigidity, see

MULTIPOL ).

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone XE at entrance and XS

at exit, as for QUADRUPO, and by the extent λE at entrance, λS at exit. The fringe field extents for the dipole component are
λE and λS . The fringe field extent for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient E2 (E3, ...,
E10) at entrance, and S2 (S3, ..., S10) at exit, such that the fringe field extent is λE ∗E2 (λE ∗E3, ..., λE ∗E10) at entrance and
λS ∗ S2 (λS ∗ S3, ..., λS ∗ S10) at exit.

If λE = 0 (λS = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, XE (XS) is forced to
zero (for the mere purpose of saving computing time).

If Ei = 0 (Si = 0) (i = 2, 10), the entrance (exit) fringe field for multipole component i is considered as a sharp edge field.

Any multipole component ~Ei can be rotated independently by an angle RXi around the longitudinal X-axis, for the simulation
of positioning defects, as well as skew lenses.
Use PARTICUL prior to ELMULT, for the definition of particle mass and charge.

1



Figure 1: An electric multipole combining skew-quadrupole ( ~E2 6= ~0, ~R2 = π/4) and skew-
octupole ( ~E4 6= ~0, ~R4 = π/8) components ( ~E1 = ~E3 = ~E5 = ... = ~E10 =
~0) [?].
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ELMULT 1 Electric multipole

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, E1, E2, ..., E10 Length of element ; radius at pole tip ; 2*cm, 10*V/m 12*E
field at pole tip for dipole, quadrupole,
..., dodecapole components

Entrance face
XE , λE , E2, ..., E10 Integration zone ; fringe field extent : 2*cm, 9*no dim. 11*E

dipole fringe field extent = λE ;
quadrupole fringe field extent = λE ∗ E2 ;
...
20-pole fringe field extent = λE ∗ E10

(sharp edge if field extent is zero)

NCE, C0 − C5 same as QUADRUPO 0-6, 6*no dim. I, 6*E

Exit face
XS , λS , S2, ..., S10 Integration zone ; as for entrance 2*cm, 9*no dim. 11*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

R1, R2, R3, ..., R10 Skew angles of field components 10*rad 10*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 Use PARTICUL to declare mass and charge.
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ELREVOL : 1-D uniform mesh electric field map

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN reading
sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 I=1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and EX(I) are the values of the X
component of the field. EX is normalized with ENORM prior to ray-tracing. As well the longitudinal coordinate X is normalized
with a XNORM coefficient (useful to convert to centimeters, the working units in zgoubi).

X-cylindrical symmetry is assumed, resulting in EY and EZ taken to be zero on axis. ~E(X,Y, Z) and its derivatives along a
particle trajectory are calculated by means of a 5-points polynomial interpolation followed by second order off-axis extrapolation
(see sections ?? and ??).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag ID and
coefficients A, B, C, A′, B′, C ′.

Use PARTICUL prior to ELREVOL, for the definition of particle mass and charge.
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ELREVOL 1 1-D uniform mesh electric field map
X-axis cylindrical symmetry is assumed

IC, IL IC = 1, 2 : print the map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories.

ENORM, X-NORM Field and X-coordinate normalization coeff. 2*no dim. 2*E

TITL Title. Start with “FLIP” to get field map X-flipped. A80

IX Number of longitudinal nodes of the map ≤ 400 I

FNAME 2 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Unused 2, 25 or 4 I

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 Use PARTICUL to declare mass and charge.
2 FNAME (e.g., e-lens.map) contains the field data. These must be formatted according to the following FORTRAN sequence :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

where X(I) and EX(I) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names FNAME must be-
gin with ’B ’ or ’b ’. ‘Binary’ will then automatically be set to ‘.TRUE.’
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EMMA : 2-D Cartesian or cylindrical mesh field map for EMMA FFAG

EMMA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps representing the EMMA FFAG cell
quadrupole doublet1 [?, ?].

EMMA can sum up independent field maps of each of the two quadrupoles, with each its scaling coefficient. The two maps
can be radially positioned independently of one another at YF , YD respectively, just like the actual EMMA quadrupoles. In
particular,

MOD : operational and map FORMAT reading mode ;
MOD≤19 : Cartesian mesh ;
MOD≥20 : cylindrical mesh.

MOD=0 : two 2D maps, one representing QF, one reprensenting QD. A single map, superimposition of both, is built prior
to tracking and used for tracking.

MOD=1 : two 2D maps, one representing QF, one reprensenting QD, a resulting single map is devised in the following
way : QF new is interpolated from QF with dr=xF, QD new is interpolated from QD with dr=xD. A single map, superimposition
of both, is built prior to tracking and used for tracking.

The parameters that move/position the maps, as (YF , YD), are accessible from the FIT, allowing to adjust the cell tunes.

EMMA works much like TOSCA. Refer to that keyword, and to the FORTRAN file emmac.f, for details.

1The stepwise ray-tracing code Zgoubi is the on-line model code for the worlds first non-scaling FFAG experiment.
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EMMA 2-D Cartesian or cylindrical mesh field map for EMMA FFAG

IC, IL see CARTEMES 0-2, 0-2[×10n] 2*I

BNORM, XN,YN, ZN Field and X-,Y-,Z-coordinate normalization coefficients 4*no dim. 4*E

TITL Title. Start with “FLIP” to get field map X-flipped A80

IX , IY , IZ, MOD[.i] Number of nodes of the mesh in the X , Y ≤ 400, ≤ 200, 3*I
and Z directions, IZ = 1 for single 2-D map ; 1, ≥ 0[.1-9]
MOD : operational and map FORMAT reading mode 1

MOD≤19 : Cartesian mesh ;
MOD≥20 : cylindrical mesh ;
.i, optional, tells the reading FORMAT, default is ’*’.

FNAME 1 Names of the NF files that contain the 2-D maps, A80
(K = 1, NF ) ordered from Z(1) to Z(NF ).

If MOD=0 : a single map, superimposition of QF and QD ones, is built for tracking.
If MOD=1 : a single map, interpolated from QF[xF ] and QD[xD] ones, is built for tracking.
If MOD=22 : a single map, superimposition of QF and QD ones, is built for tracking.
If MOD=24 : field at particle is interpolated from a (QF,QD) pair of maps, closest to
current (xF , xD) value, taken from of set of (QF,QD) pairs registered in FNAME...

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE If IZ = 1 : as in CARTEMES 2, 25 or 4 I
If IZ 6= 1 : unused

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 FNAME normally contains the field map data. If MOD=24 FNAME(K) contains the names of the QF maps and QD maps, as well as the QF-QD distance
attached to each one of these pairs.
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FAISCEAU Print particle coordinates

Print particle coordinates at the location where the
keyword is introduced in the structure.

FAISCNL Store particle coordinates in file FNAME

FNAME1 Name of storage file A80
(e.g., zgoubi.fai, or b zgoubi.fai for binary storage).

FAISTORE Store coordinates every IP other pass [, at elements with appropriate label]

FNAME 1 Name of storage file (e.g. zgoubi.fai) [ ; label(s) of the element(s) at the exit A80,
[,LABEL(s) ] of which the store occurs (10 labels maximum)]. If either FNAME or first LABEL [, 10*A10]

is ’none’ then no storage occurs. Store occurs at all elements if first
LABEL is ’all’ or ’ALL’.

IP Store every IP other pass (when using REBELOTE I
with NPASS ≥ IP − 1).

1 Stored data can be read back from FNAME using OBJET, KOBJ = 3.
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FFAG : FFAG magnet, N -tuple [?, ?]

FFAG works much like DIPOLES as to the field modelling, apart from the radial dependence of the field, B = B0(r/r0)
k,

so-called “scaling”. Note that DIPOLES does similar job by using a Taylor r-expansion of B0(r/r0)
k.

The FFAG procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole
N -tuple - as for instance in an FFAG doublet or triplet. A detailed application, with five dipoles, can be found in Ref. [?]. This
is done in the way described below.

The dimensioning of the magnet is defined by

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

For each one of the N = 1 to (maximum) 5 dipoles of the N -tuple, the two effective field boundaries (entrance and exit EFBs)
from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by
the following parameters (in the same manner as in DIPOLE, DIPOLE-M ) (see Fig. ??-A page ??, and Fig. 1)

ACNi : arbitrary inner angle, used for EFB’s positioning
ω : azimuth of an EFB with respect to ACN
θ : angle of an EFB with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1, U2 : extent of the linear part of an EFB

ACN1

ACN3

AT

ACN2

B2

B1 B3

M

Figure 1: Definition of a dipole N -tuple (N = 3, a triplet here) using the DIPOLES
or FFAG procedures.

Calculation of the Field From a Single Dipole The magnetic field is calculated in polar coordinates. At all (R, θ) in the
median plane (z = 0), the magnetic field due a single one (index i) of the dipoles of a N -tuple FFAG magnet is written

BZi(R, θ) = BZ0,i Fi(R, θ) (R/RM )
Ki

wherein BZ0,i is a reference field, at reference radius RMi, whereas F(R, θ) is calculated as described below.

Calculation of Fi(R, θ) The fringe field coefficient Fi(R, θ) associated with a dipole is computed as in the procedure DIPOLES
(eq. ??), including (rigorously if the interpolation method is used, see page ??, or to order zero if the analytic method is used,
see page ??) radial dependence of the gap size

g(R) = g0 (RM/R)κ (1)

so to simulate the effect of gap shaping on BZi(R, θ)|R field fall-off, over the all radial extent of a scaling FFAG dipole (with
normally - but not necessarily in practice - κ ≈ Ki).

Calculation of the Field Resulting From All N Dipoles For the rest, namely, calculation of the full field at particle position
from the N dipoles, analytical calculation or numerical interpolation of the mid-plane field derivatives, extrapolation off median
plane, etc., things are performed exactly as in the case of the DIPOLES procedure (see page ??).
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Sharp Edge Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :
- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. ??,

ω+ = ACENT (resp. ω− = −(AT −ACENT )), together with θ = 0 at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.
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FFAG FFAG magnet, N -tuple
UNDER DEVELOPMENT
BZ =

∑N
i=1 BZ0,i Fi(R, θ) (R/RM,i)

Ki

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

N , AT , RM Number of dipoles in the FFAG N -tuple ; no dim., I, 2*E
total angular extent of the dipole ; reference radius deg, cm

Repeat N times the following sequence

ACN, δRM , Azimuth for dipole positioning ; RM,i = RM + δRM ; deg, cm, kG, 4*E
BZ0, K field at RM,i ; index no dim.

ENTRANCE FIELD BOUNDARY

g0, κ Fringe field extent (g = g0 (RM/R)κ) cm, no dim. 2*E
NC, C0 − C5, shift Unused ; C0 to C5 : fringe field coefficients ; EFB shift 0-6, 6*no dim, cm I,7*E
ω+, θ, R1, U1, U2, R2 Azimuth of entrance EFB with respect to ACN ; 2*deg, 4*cm 6*E

wedge angle of EFB ; radii and linear
extents of EFB (use | U1,2 |= ∞ when R1,2 = ∞)

(Note : g0 = 0, ω+ = ACENT, θ = 0 and KIRD=0 for sharp edge)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

g0, κ cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, θ, R1, U1, U2, R2 2*deg, 4*cm 6*E

(Note : g0 = 0, ω− = −AT+ ACENT, θ = 0 and KIRD=0 for sharp edge)

LATERAL FIELD BOUNDARY
to be implemented - following data not used

g0, κ cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, θ, R1, U1, U2, R2 2*deg, 4*cm 6*E

End of repeat

KIRD, Resol KIRD=0 : analytical computation of field derivatives ; 0, 2, 25 or 4 ; I, E
Resol = 2/4 for 2nd/4th order field derivatives computation no dim.
KIRD2, 4 or 25 : numerical interpolation of field derivatives ;
size of flying interpolation mesh is XPAS/Resol

KIRD=2 or 25 : second degree, 9- or 25-point grid
KIRD=4 : fourth degree, 25-point grid

XPAS Integration step cm E

KPOS Positioning of the magnet, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the magnet
If KPOS = 1 Automatic positioning of the magnet, by means of
DP reference relative momentum no dim. E
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FFAG-SPI : Spiral FFAG magnet, N -tuple [?, ?]

FFAG-SPI works much like FFAG as to the field modelling, apart from the axial dependence of the field.

The FFAG procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole
N -tuple - as for instance in an FFAG doublet or triplet (Fig. 1). This is done in the way described below.

The dimensioning of the magnet is defined by

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

For each one of the N = 1 to (maximum) 5 dipoles of the N -tuple, the two effective field boundaries (entrance and exit EFBs)
from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by
the following parameters

ACNi : arbitrary inner angle, used for EFB’s positioning
ω : azimuth of an EFB with respect to ACN
ξ : spiral angle

with ACNi and ω as defined in Fig. 1 (similar to what can be found in Figs. ?? and ??-A).

AT

ACN1

ACN3

ACN2

R0

O

ξ

ω−<0

ω+>0

Figure 1: A N -tuple spiral sector FFAG magnet (N = 3 here, simulating active field
clamps at entrance and exit side of a central dipole).

Calculation of the Field From a Single Dipole The magnetic field is calculated in polar coordinates. At all (R, θ) in the
median plane (Z = 0), the magnetic field due a single one (index i) of the dipoles of a N -tuple FFAG magnet is written

BZi(R, θ) = BZ0,i Fi(R, θ) (R/RM )
Ki

wherein BZ0,i is a reference field, at reference radius RMi, whereas F(R, θ) is calculated as described below.

Calculation of Fi(R, θ) The fringe field coefficient Fi(R, θ) associated with a dipole is computed as in the procedure DIPOLES
(eq. ??), including radial dependence of the gap size

g(R) = g0 (RM/R)κ (1)

so to simulate the effect of gap shaping on BZi(R, θ)|R field fall-off, over the all radial extent of the dipole (with normally - yet
not necessarily in practice - κ ≈ Ki).

Calculation of the Full Field From All N Dipoles For the rest, namely calculation of the full field at particle position, as
resulting from the N dipoles, calculation of the mid-plane field derivatives, extrapolation off median plane, etc., things are
performed in the same manner as for the DIPOLES procedure (see page ??).
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FFAG-SPI Spiral FFAG magnet, N -tuple
UNDER DEVELOPMENT
BZ =

∑N
i=1 BZ0,i Fi(R, θ) (R/RM,i)

Ki

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

N , AT , RM Number of dipoles in the FFAG N -tuple ; no dim., I, 2*E
total angular extent of the dipole ; reference radius deg, cm

Repeat N times the following sequence

ACN, δRM , Azimuth for dipole positioning ; RM,i = RM + δRM ; deg, cm, kG, 4*E
BZ0, K field at RM,i ; index no dim.

ENTRANCE FIELD BOUNDARY

g0, κ Fringe field extent (g = g0 (RM/R)κ) cm, no dim. 2*E
NC, C0 − C5, shift Unused ; C0 to C5 : fringe field coefficients ; EFB shift 0-6, 6*no dim, cm I,7*E
ω+, ξ, 4 dummies Azimuth of entrance EFB with respect to ACN ; 2*deg, 4*unused 6*E

spiral angle ; 4 × unused

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

g0, κ cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, ξ, 4 dummies 2*deg, 4*unused 6*E

LATERAL FIELD BOUNDARY
to be implemented - following data not used

g0, κ cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, θ, R1, U1, U2, R2 2*deg, 4*cm 6*E

End of repeat

KIRD, Resol KIRD=0 : analytical computation of field derivatives ; 0, 2, 25 or 4 ; I, E
Resol = 2/4 for 2nd/4th order field derivatives computation no dim.
KIRD2, 4 or 25 : numerical interpolation of field derivatives ;
size of flying interpolation mesh is XPAS/Resol

KIRD=2 or 25 : second degree, 9- or 25-point grid
KIRD=4 : fourth degree, 25-point grid

XPAS Integration step cm E

KPOS Positioning of the magnet, normally 2. Two options : 1-2 I

If KPOS = 2 Positioning as follows :
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E

at entrance and exit of the magnet
If KPOS = 1 Automatic positioning of the magnet, by means of
DP reference relative momentum no dim. E
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FIN, END End of input data list

Any information in zgoubi.dat following these keywords will be ignored
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FIT, FIT2 : Fitting procedure

The keywords FIT, FIT2 allow the automatic adjustment of up to 20 variables, for fitting up to 20 constraints.

FIT was drawn from the matrix transport code BETA [?]. FIT2 is a simplex method (Nelder-Mead method), it has been imple-
mented next [?]. One or the other may converge faster, or may have some advantages/disadvantages, depending on the problem.

Any physical parameter of any element in the zgoubi.dat data list may be varied. Examples of available constraints are, amongst
others :
- trajectory coordinates in the F (J, I) array, I = particle number, J = coordinate number = 1 to 7 for respectively D, Y , T , Z,P ,
S =path length, time ;
- spin coordinates ;
- any of the 6× 6 coefficients of the first order transfer matrix [Rij ] as defined in the keyword MATRIX ;
- any of the 6× 6× 6 coefficients of the second order array [Tijk] as defined in MATRIX ;
- any of the 4× 4 coefficients of the beam σ-matrix
- transmission efficiency of an optical channel.
- tunes νY,Z and periodic betatron functions βY,Z , αY,Z , γY,Z , as computed in the coupled hypothesis [?].

A full list of the constraints available is given in the table page 5.

FIT, FIT2 are compatible with the use of (i.e., can be encompassed in) REBELOTE for successive fitting trials using various sets
of parameters (option K = 22 in REBELOTE ).

VARIABLES The first input data in FIT[2] is the number of variables NV. A variable is defined by a line of data comprised of
IR = number of the varied element in the structure
IP = number of the physical parameter to be varied in this element
XC = coupling parameter. Normally XC = 0. If XC 6= 0, coupling will occur (see below)

followed by, either
DV = allowed relative range of variation of the physical parameter IP

or
[V min, V max] = allowed interval of variation of the physical parameter IP

Numbering of the Elements (IR ) : The elements (i.e., keywords DIPOLE, QUADRUPO, etc.) as read by zgoubi in the
zgoubi.dat sequence are assigned a number. which follows their sequence in the data file. It is that very number, IR, that the
FIT[2] procedure uses. A simple way to get IR once the zgoubi.dat file has been built, is to do a preliminary run, since the first
thing zgoubi does is copy the sequence from zgoubi.dat into the result file zgoubi.res, with all elements numbered.

Numbering of the Physical Parameters (IP ) : All the data that follow a keyword are numbered - except for SCALING, see
below.
With most of the keywords, the numbering follows the principle hereafter :

Input data Numbering for FIT
’KEYWORD’
first line 1, 2, 3, ..., 9
second line 10, 11, 12, 13, ..., 19
this is a comment a line of comments is skipped
next line 20, 21, 22, ..., 29
and so on...

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian or cylindrical mesh field map) are as follows.
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Input data Numbering for FIT
’QUADRUPO’
IL 1
XL, R0, B 10, 11, 12
XE , λE 20, 21
NCE, C0, C1, C2, C3, C4, C5 30, 31, 32, 33, 34, 35, 36
XS , λS 40, 41
NCS, C0, C1, C2, C3, C4, C5 50, 51, 52, 53, 54, 55, 56
XPAS 60
KPOS, XCE, YCE, ALE 70, 71, 72, 73

TOSCA
IC, IL 1, 2

BNORM, X- [, Y-, Z-]NORM 10, 11 [, 12, 13]
TIT This is text
IX , IY , IZ, MOD 20, 21, 22, 23
FNAME This is text
ID, A, B, C [A′, B′, C ′, etc. if ID ≥ 2] 30, 31, 32, 33 [34, 35, 36 [, 37, 38, 39] if ID ≥ 2]
IORDRE 40
XPAS 50
KPOS, XCE, YCE, ALE 60,61,62,63

A different numbering, fully sequential, has been adopted in the following elements :

AIMANT, DIPOLE, EBMULT, ELMULT, MULTIPOL.

It is illustrated here after in the case of MULTIPOL and DIPOLE-M.

Input data Numbering for FIT
’MULTIPOL’
0 1
365.760 10.0 7.5739 1.4939 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2, 3, 4, 5, ..., 13
10.0 4.0 0.80 0.0 0.0 0.0 0.0 0. 0. 0. 0. 14, 15, ..., 24
NC, C0, C1, C2, C3, C4, C5, shift 25, 26, 27, 28, 29, 30, 31, 32
10.0 4.0 0.80 0.0 0.0 0.0 0.0 0. 0. 0. 0. 33, 34, ..., 43
NC, C0, C1, C2, C3, C4, C5, shift 44, 45, 46, 47, ..., 51
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 52, 53, 54, ..., 61
step size 62
KPOS, XCE, YCE, ALE 63, 64, 65, 66
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Input data Numbering for FIT
’DIPOLE-M’
NFACE, IC, IL 1, 2, 3
IAMAX, IRMAX 4, 5
B0, N , B, G 6, 7, 8, 9
AT, ACENT, RM, RMIN, RMAX 10, 11, 12, 13, 14
λ , ξ 15,16
NC, C0, C1, C2, C3, C4, C5, shift 17, 18, 19, 20, 21, 22, 23, 24
ω, θ, R1, U1, U2, R2 25, 26, 27, 28, 29, 30
etc.

Parameters in SCALING also have a sequential numbering, yet some positions are skipped, this is illustrated in the example
hereafter which covers all possible working modes of SCALING (all details regarding the numbering can be found in the
FORTRAN subroutine rscal.f) :

Input data Numbering for FIT Quantities to be varied
(see SCALING for details)

’SCALING’
1 9 1 2 Non relevant

AGSMM *AF *BF Keywords concerned, their labels
-1 3 12 1. 13 1. 14 1. 3 4 5 dB1, dB2, dB3 parameters in AGSMM
7.2135 6 Field factor
1 7 Timing

AGSMM *AD *BD
-1 3 12 1. 13 1. 14 1. 8 9 10
7.2135 11
1 12

AGSMM *CF
-1 3 12 1. 13 1. 14 1. 13 14 15
7.2135 16
1 17

AGSQUAD QH *
3
0.605 0.77 0.879 18 19 20 Field factor
1 2000 10000 21 22 23 Timing

AGSQUAD QV *
3
0.587 0.83 0.83 24 25 26
1 2000 10000 27 28 29

MULTIPOL COH1
1.10 No numbering if 1.10 type of option
./Csnk3D/bump centered.scal
1 2
MULTIPOL COH2
1.10
./Csnk3D/bump centered.scal
1 4
MULTIPOL KICKH KICKV
2
0.1 0.3 30 31 Field factor
1 10 32 33 Timing

MULTIPOL
-1
0.72135154291 34
1 35
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Coupled Variables (XC) Coupling a variable parameter to any other parameter in the structure is possible. This is done by
giving XC a value of the form r.ppp where the integer part r is the number of the coupled element in the structure (equivalent
to IR, see above), and the decimal part ppp is the number of its parameter of concern (equivalent to IP , see above) (if the
parameter number is in the range 1, 2, ... ,9 (resp. 10, 11, ... 19 or 100, ...), then ppp must take the form 00p (resp. 0pp, ppp)).
For example, XC = 20.010 is a request for coupling with the parameter number 10 of element number 20 of the structure, while
XC = 20.100 is a request for coupling with the parameter number 100 of element 20.

An element of the structure which is coupled (by means of XC 6= 0) to a variable declared in the data list of the FIT[2] keyword,
needs not appear as one of the NV variables in that data list (this would be redundant information).
XC can be either positive or negative. If XC > 0, then the coupled parameter will be given the same value as the variable
parameter (for example, symmetric quadrupoles in a lens triplet will be given the same field). If XC < 0, then the coupled
parameter will be given a variation opposite to that of the variable, so that the sum of the two parameters stays constant (for
example, an optical element can be shifted while preserving the length of the structure, by coupling together its upstream and
downstream drift spaces).

Variation Range There are two ways to define the allowed range for a variable, as follows.

(i) DV : For a variable (parameter number IP under some keyword) with initial value v, the FIT[2] procedure is allowed to
explore the range v × (1±DV ).
(i) [vmin, vmax] : This specifies the allowed interval of variation.

CONSTRAINTS The next input data in FIT[2] is the number of constraints, NC. A list of the available constraints is given in
the table page 5 ; adding or changing a constraint resorts to the FORTRAN file ff.f.

Each constraint is defined by the following list of data :

IC = type of constraint (see table p. 5).
I , J = constraint (i.e., Rij , determinant, tune ; Tijk ; σij ; trajectory #I and coordinate #J)
IR = number of the keyword at the exit of which the constraint applies
V = desired value of the constraint
W = weight of the constraint (smaller W for higher weight)
NP NP values follow

IC=0 : The coefficients σ11 (σ33) = horizontal (vertical) beta values and σ22 (σ44) = horizontal (vertical) derivatives (α =
−β′/2) are obtained by transport of their initial values at line start as introduced using for instance OBJET, KOBJ=5.1.
IC=0.1 : Beam parameters : σ11 = βY , σ12 = σ21 = −αY , σ22 = γY , σ33 = βZ , σ34 = σ43 = −αZ , σ44 = γZ ; periodic
dispersion : σ16 = DY , σ26 = D′

Y , σ36 = DZ , σ46 = D′
Z , all quantities derived by assuming periodic structure and identifying

the first order transfer matrix with the form Icosµ+ Jsinµ.
IC=1, 2 : The coefficients Rij and Tijk are calculated following the procedures described in MATRIX, option IFOC = 0. The
fitting of the [Rij ] matrix coefficients supposes the tracking of particles with paraxial coordinates, normally defined using OBJET
option KOBJ = 5 or 6.
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Type of
constraint

Parameters defining the constraints Object definition
(recommended)IC I J Constraint Parameter(s)

# values

σ-matrix 0 1 - 6 1 - 6 σIJ (σ11 = βY , σ12 = σ21 = αY , etc.) OBJET/KOBJ=5,6

Periodic parameters 0.N 1 - 6 1 - 6 σIJ (σ11 = cosµY + αY sinµY , etc.) OBJET/KOBJ=5.N
7 any Y-tune = µY /2π

(N=1-9 for MATRIX 8 any Z-tune = µZ/2π
block 1-9)) 9 any cos(µY )

10 any cos(µZ)

First order 1 1− 6 1− 6 Transport coeff. RIJ OBJET/KOBJ=5
transport coeffs. 7 i i 6= 8 : YY-determinant ; i=8 : YZ-det.

8 j j 6= 7 : ZZ-determinant ; j=7 : ZY-det.

Second order 2 1− 6 11− 66 Transport coeff. TI,j,k OBJET/KOBJ=6
transport coeffs. (j = [J/10], k = J − 10[J/10])

Trajectory 3 1− IMAX 1− 7 F (J, I) [MC]OBJET
coordinates −1 1− 7 < F (J, i) >i=1,IMAX

−2 1− 7 Sup(|F (J, i)|)i=1,IMAX
−3 1− 7 Dist|F (J, I)|i=I1,I2,dI 3 I1 I2 dI

3.1 1− IMAX 1− 7 |F (J, I)− FO(J, I)|
3.2 1− IMAX 1− 7 |F (J, I) + FO(J, I)|
3.4 1− IMAX 1− 7 |F (J, I)− F (J,K)| 1 K ≤ IMAX
3.5 1− IMAX 1− 7 (F (J, I)− F (J,K))/F (J,K) 1 K ≤ IMAX

Ellipse parameters 4 1− 6 1− 6 σIJ (σ11 = βY , OBJET/KOBJ=8 ;
σ12 = σ21 = αY , etc.) MCOBJET/KOBJ=3

Number of 5 −1 any Nsurvived/IMAX OBJET
particles 1− 3 any Nin ǫY,Z,X

/Nsurvived 1 ǫ/π MCOBJET
4− 6 any Nin best ǫY,Z,X,rms

/Nsurvived MCOBJET

Across optical 7.1 1− IMAX 1− 7 min. (1) or max. (2) of F (J, I) 1 1-2 [MC]OBJET
elements, 7.2 1− IMAX 1− 7 max(F (J, I)) - minF (J, I))

7.3 1− IMAX 1− 7 minF (J, I)) + max(F (J, I))
7.6 1− IMAX 1− 7 min. (1) or max. (2) value of BJ 1 1-2
7.7 1− IMAX 1− 7 max(BJ ) - min(BJ )
7.8 1− IMAX 1− 7 min(BJ ) + max(BJ )
7.9 1− IMAX 1− 7

∫
BJ ds

Spin 10 1− IMAX 1− 4 SX,Y,Z(I), |~S(I)| [MC]OBJET
10.1 1− IMAX 1− 3 |SX,Y,Z(I)− SOX,Y,Z(I)| +SPNTRK

IC=3 : If 1 ≤ I ≤ IMAX then the value of coordinate type J (J = 1, 6 for respectively D, Y, T, Z, P, S) of particle number
I (1 ≤ I ≤ IMAX) is constrained. However I can take special meaning, as follows.

I = −1 : the constraint is the mean value of coordinate of type J ,
I = −2 : the constraint is the maximum value of coordinate of type J ,
I = −3 : the constraint is the distance between two different particles.

IC=3.1 : Absolute value of the difference between local and initial J-coordinate of particle I (convenient e.g. for closed orbit
search).
IC=3.2 : Absolute value of the sum of the local and initial J-coordinate of particle I .
IC=3.3 : Minimum (NP=1) or maximum value (NP=2) of the local J-coordinate of particle I .
IC=3.4 : Absolute value of the difference between local J-coordinates of particles respectively I and K.
IC=4 : The coefficients σ11 (σ33) = horizontal (vertical) beta values and σ22 (σ44) = horizontal (vertical) derivatives
(α = −β′/2) are derived from an ellipse match of the current particle population (as generated for instance using MCOB-
JET, KOBJ=3 ).
The fitting of the [σij ] coefficients supposes the tracking of a relevant population of particles within an appropriate emittance.
IC=5 : The constraint value is the ratio of particles (over IMAX). Three cases possible :

I = −1, ratio of particles still on the run.
I = 1, 2, 3, maximization of the number of particles encompassed within a given I-type (for respectively Y, Z, D) phase-

space emittance value. Then, NP=1, followed by the emittance value. The center and shape of the ellipse are determined by a
matching to the position and shape of the particle distribution.

I = 4, 5, 6, same as previous case, except for the ellipse, taken to be the rms matched ellipse to the distribution. Thus
NP=0.
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IC=10 : If 1 ≤ I ≤ IMAX then the value of coordinate type J (J = 1, 3 for respectively SX , SY , SZ ) of particle number I is
constrained.
IC=10.1 : Difference between final and initial J-spin coordinate of particle I (convenient e.g. for ~n0 spin vector search).

OBJECT DEFINITION Depending on the type of constraint (see table p. 5), constraint calculations are performed either from
transport coefficient calculation and in such case require OBJET with either KOBJ = 5 or KOBJ = 6, or from particle distributions
and in this case need object definition using for instance OBJET with KOBJ = 8, MCOBJET with KOBJ = 3.

THE FITTING METHODS The FIT procedure was drawn from the matrix transport code BETA [?]. It is a direct sequential
minimization of the quadratic sum of all errors (i.e., differences between desired and actual values for the NC constraints), each
normalized by its specified weight W (the smaller W , the stronger the constraint).
The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed by the user. At
each iteration, the optimum value of the step size, as well as the optimum direction of variation, is determined for each one of the
NV variables. Then follows an iterative global variation of all NV variables, until the minimization fails which results in a next
iteration on the optimization of the step sizes.

The FIT2 procedure is based on the Nelder-Mead method, it has various specificities, details can be found in Ref. [?].

The optimization process may be stopped by means of a penalty value, or a maximum number of iterations on the step size or on
the call to the function.

COMBINING FIT[2] AND REBELOTE FIT[2] may be followed by the keyword REBELOTE. This allows executing again
the same fit procedure, after having changed the value of some parameter in zgoubi.dat data list. That’s the role of REBELOTE
in that game : it changes that parameter, and causes the fit to be executed again with that different value.
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FIT, FIT2 Fitting procedure
NV Number of physical parameters to be varied ≤ 20 I
For I = 1, NV repeat NV times the following sequence

either :
IR, IP, XC, DV Number of the element in the structure ; ≤MXL 1, ≤MXD, 2*I, 2*E

number of the physical parameter in the element ; ± MXD.MXD 2,
coupling switch (off = 0) ; variation range (±) relative

or :
IR, IP, XC, [Vmin, Vmax] ≤MXL, ≤MXD, 2*I, 3*E

NC [, penalty [,ITER]] 3 Number of constraints [, penalty [, number of iterations]]. ≤ 20 [,10−n [,> 0]] I [, E [, I]]
For I = 1, NC repeat NC times the following sequence :

IC, I , J , IR, V 4, WV , IC, I and J define the type of constraint (see table below) ; 0-5, 3*(>0), 4*I, 2*E,
NP [, pi(i = 1, NP )] IR : number of the element after which the constraint applies ; current unit, I, NP∗E

V : value ; W : weight (the stronger the lower WV ) 2*no dim.,
NP : number of parameters ; if NP ≥ 1, pi(i = 1, NP ) : curr. units
parameter values.

1 MXL value is set in include file MXLD.H.
2 MXD value is set in include file MXLD.H. Data is of the form “integer.iii” with i a 1-digit integer.
3 FIT[2] will stop when the sum of the squared residuals gets <penalty, or when the maximum allowed number of iterations is reached.
4 V is in current zgoubi units in the case of particle coordinates (cm, mrad). It is in MKSA units (m, rad) in the case of matrix coefficients.
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FOCALE Particle coordinates and horizontal beam size at distance XL

XL Distance from the location of the keyword cm E

FOCALEZ Particle coordinates and vertical beam size at distance XL

XL Distance from the location of the keyword cm E

1



GASCAT : Gas scattering

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of scattering by
residual gas.

Installation is to be completed.

1



GASCAT Gas scattering

KGA Off/On switch 0, 1 I

AI , DEN Atomic number ; density 2*E

2



GETFITVAL : Get values of variables as saved from former FIT[2] run

This keyword allows reading, from a file whose name needs be specified, parameter values to be assigned to optical elements in
zgoubi.dat.

That file is expected to contain a copy-paste of the data under the FIT[2] procedure as displayed in zgoubi.res, normally under
the form

STATUS OF VARIABLES (Iteration # 95)
LMNT VAR PARAM MINIMUM INITIAL FINAL MAXIMUM STEP NAME LBL1 LBL2
145 1 4 -3.000E+03 762. 761.9484791 3.000E+03 1.254E-05 MULTIPOL HKIC DHCB02
182 2 4 -1.000E+03 -231. -230.9846875 1.000E+03 4.182E-06 MULTIPOL HKIC DHCB08
146 3 4 -1.000E+03 -320. -319.8554171 1.000E+03 4.182E-06 MULTIPOL VKIC DVCB02
183 4 4 -1.000E+03 528. 527.7249064 1.000E+03 4.182E-06 MULTIPOL VKIC DVCB08
615 5 4 -3.000E+03 308. 307.6860565 3.000E+03 1.254E-05 MULTIPOL HKIC DHCF02
651 6 4 -1.000E+03 -114. -113.8490362 1.000E+03 4.182E-06 MULTIPOL HKIC DHCF08
616 7 4 -1.000E+03 -78.9 -78.88730937 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF02
652 8 4 -1.000E+03 212. 211.8789183 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF08
# STATUS OF CONSTRAINTS
# TYPE I J LMNT# DESIRED WEIGHT REACHED KI2 * Parameter(s)
# 3 1 2 127 0.0000000E+00 1.0000E+00 1.0068088E-08 6.0335E-01 * 0 :
# 3 1 3 127 0.0000000E+00 1.0000E+00 7.0101405E-09 2.9250E-01 * 0 :
# 3 1 4 127 0.0000000E+00 1.0000E+00 2.9184383E-10 5.0696E-04 * 0 :
# 3 1 5 127 0.0000000E+00 1.0000E+00 3.1142381E-10 5.7727E-04 * 0 :
# 3 1 2 436 0.0000000E+00 1.0000E+00 3.8438378E-09 8.7944E-02 * 0 :
# 3 1 3 436 0.0000000E+00 1.0000E+00 1.5773011E-09 1.4808E-02 * 0 :
# 3 1 4 436 0.0000000E+00 1.0000E+00 2.2081272E-10 2.9022E-04 * 0 :
# 3 1 5 436 0.0000000E+00 1.0000E+00 5.7930552E-11 1.9975E-05 * 0 :
# Function called 1859 times
# Xi2 = 1.68006E-16 Busy...

A ’#’ at the beginning of a line means it is commented, thus it will not be taken into account. However a copy-paste from
zgoubi.res (which is the case in the present example) would not not need any commenting.

Since some of the FIT[2] variables may belong in [MC]OBJET, GETFITVAL may appear right before [MC]OBJET in zgoubi.dat,
to allow for its updating.
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GETFITVAL Get values of variables as saved from former FIT[2] run

FNAME Name of storage file. Zgoubi will proceed silently if not found. A
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HISTO : 1-D histogram

Any of the coordinates used in zgoubi may be histogrammed, namely initial Y0, T0, Z0, P0, S0, D0 or current Y , T , Z, P , S, D
particle coordinates (S = path length ; D may change in decay process simulation with MCDESINT, or when ray-tracing in ~E

fields), and also spin coordinates and modulus SX , SY , SZ and
∥∥∥~S

∥∥∥.

HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP. TYP is a one-
character string. If it is set equal to ‘S’, only secondary particles (they are tagged with an ’S’) will be histogrammed. If it is set
equal to ‘P’, then only parent particles (non-’S’) will be histogrammed. For no discrimination between S-econdary and P-arent
particles, TYP = ‘Q’ must be used.

The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized with NORM = 1, to
avoid saturation.

Histograms are indexed with the parameter NH. This allows making independent histograms of the same coordinate at several
locations in a structure. This is also useful when piling up problems in a single input data file (see also RESET ). NH is in the
range 1-5.

If REBELOTE is used, the statistics on the 1+NPASS runs in the structure will add up.
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HISTO 1-D histogram

J , Xmin, Xmax, J = type of coordinate to be histogrammed ; 1-24, 2* I, 2*E, 2*I
NBK, NH the following are available : current units,

• current coordinates : < 120, 1-5
1(D), 2(Y ), 3(T ), 4(Z), 5(P ), 6(S),
• initial coordinates :
11(D0), 12(Y0), 13(T0), 14(Z0), 15(P0), 16(S0),
• spin :
21(SX), 22(SY ), 23(SZ), 24(< S >) ;
Xmin, Xmax = limits of the histogram, in units
of the coordinate of concern ; NBK = number of
channels ; NH = number of the histogram (for
independence of histograms of the same coordinate)

NBL, KAR, Number of lines (= vertical amplitude) ; normally 10-40, I, A1, I, A1
NORM, TYP alphanumeric character ; normalization if char., 1-2, P-S-Q

NORM = 1, otherwise NORM = 0 ; TYP = ‘P’ :
primary particles are histogrammed, or ‘S’ :
secondary, or Q : all particles - for use
with MCDESINT
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IMAGE Localization and size of horizontal waist

IMAGES Localization and size of horizontal waists

For each momentum group, as classified by
means of OBJET, KOBJ = 1, 2 or 4

IMAGESZ Localization and size of vertical waists

For each momentum group, as classified by
means of OBJET, KOBJ = 1, 2 or 4

IMAGEZ Localization and size of vertical waist

1



MAP2D : 2-D Cartesian uniform mesh field map - arbitrary magnetic field [?]

MAP2D reads a 2-D field map that provides the three components BX , BY , BZ of the magnetic field at all nodes of a 2-D
Cartesian uniform mesh in an (X,Y ) plane. No particular symmetry is assumed, which allows the treatment of any type of field
(e.g., solenoidal, or dipole, helical dipole, at arbitrary Z elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle
compatible with TOSCA code outputs), details and possible updates are to be found in the source file ’fmapw.f’ :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 J=1,JY
DO 1 I=1,IX
IF (BINARY) THEN
READ(NL) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
ELSE
READ(NL,100) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
100 FORMAT (1X, 6E11.4)
ENDIF
1 CONTINUE

IX (JY ) is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, Z is the considered Z-elevation
of the map. For binary files, FNAME must begin with ‘B ’ or ‘b ’, a flag ‘BINARY’ will thus be set to ‘.TRUE.’. The field
~B = (BX , BY , BZ) is next normalized with BNORM, prior to ray-tracing. As well the coordinates X, Y are normalized with
X-, Y-NORM coefficients (useful to convert to centimeters, the working units in zgoubi).

At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial
interpolation followed by a Z extrapolation (see sections ?? page ??, ?? page ??). The interpolation grid is 3*3-node for 2nd
order (option IORDRE = 2 ) or 5*5 for 4th order (option IORDRE = 4 ).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.
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MAP2D 2-D Cartesian uniform mesh field map - arbitrary magnetic field

IC, IL IC = 1, 2 : print the field map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories

BNORM, XN,YN Field and X-,Y-coordinate normalization coeffs. 3*no dim. 3*E

TITL Title. Start with “FLIP” to get field map X-flipped. A80

IX , JY Number of longitudinal and horizontal-transverse ≤ 400, ≤ 200 2*I
nodes of the mesh (the Z elevation is arbitrary)

FNAME 1 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Degree of polynomial interpolation, 2nd or 4th order. 2, 4 I

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 FNAME (e.g., magnet.map) contains the field map data.
These must be formatted according to the following FORTRAN read sequence (normally compatible with TOSCA code OUTPUTS - details
and possible updates are to be found in the source file ’fmapw.f’) :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’)
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
ELSE
READ(NL,100) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
100 FORMAT (1X, 6E11.4)
ENDIF
1 CONTINUE

where X(I), Y (J) are the longitudinal, horizontal coordinates in the at nodes (I, J) of the mesh, $Z(1)$ is the vertical eleva-
tion of the map, and BX , BY , BZ are the components of the field.

For binary files, FNAME must begin with ’B ’ or ’b ’˜; a logical flag ’Binary’ will then automatically be set to ’.TRUE.’
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MAP2D-E : 2-D Cartesian uniform mesh field map - arbitrary electric field

MAP2D-E reads a 2-D field map that provides the three components EX , EY , EZ of the electric field at all nodes of a 2-D
Cartesian uniform mesh in an (X,Y ) plane. No particular symmetry is assumed, which allows the treatment of any type of field
(e.g., field of a parallel-plate mirror with arbitrary Z elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle
compatible with TOSCA code outputs), details and possible updates are to be found in the source file ’fmapw.f’ :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 J=1,JY
DO 1 I=1,IX
IF (BINARY) THEN
READ(NL) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
ELSE
READ(NL,100) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
100 FORMAT (1X, 6E11.4)
ENDIF
1 CONTINUE

IX (JY ) is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, Z is the considered Z-elevation
of the map. For binary files, FNAME must begin with ‘E ’ or ‘b ’, a flag ‘BINARY’ will thus be set to ‘.TRUE.’. The field
~E = (EX , EY , EZ) is next normalized with ENORM, prior to ray-tracing. As well the coordinates X, Y are normalized with
X-,Y-NORM coefficients (useful to convert to centimeters, the working units in zgoubi.

At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial
interpolation followed by a Z extrapolation (see sections ?? page ??, ?? page ??). The interpolation grid is 3*3-node for 2nd
order (option IORDRE = 2 ) or 5*5 for 4th order (option IORDRE = 4 ).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.
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MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field

IC, IL IC = 1, 2 : print the field map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories

ENORM, X-,Y-NORM Field and X-,Y-coordinate normalization coeffs. 2*no dim. 2*E

TITL Title. Start with “FLIP” to get field map X-flipped. A80

IX , JY Number of longitudinal and horizontal-transverse ≤ 400, ≤ 200 2*I
nodes of the mesh (the Z elevation is arbitrary)

FNAME 1 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Degree of polynomial interpolation, 2nd or 4th order. 2, 4 I

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 FNAME (e.g., ‘‘mirror.map’’) contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details
and possible updates are to be found in the source file ’fmapw.f’ :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’)
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
ELSE
READ(NL,100) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
100 FORMAT (1X, 6E11.4)
ENDIF
1 CONTINUE

where X(I), Y (J) are the longitudinal, horizontal coordinates in the
at nodes (I, J) of the mesh, $Z(1)$ is the vertical elevation of the map, and EX , EY , EZ
are the components of the field.

For binary files, FNAME must begin with ’B ’ or ’b ’˜; a logical flag ’Binary’ will then automatically be set to ’.TRUE.’
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MARKER : Marker

MARKER does nothing. Just a marker. No data.

As any other keyword, MARKER is allowed two LABELs. Using ’.plt’ as a second LABEL will cause storage of current
coordinates into zgoubi.plt.
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MARKER Marker

Just a marker. No data
’.plt’ as a second LABEL will cause storage of current coordinates into zgoubi.plt
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MATRIX : Calculation of transfer coefficients, periodic parameters

MATRIX causes the calculation of the transfer coefficients through the optical structure, from the OBJET down to the location
where MATRIX is introduced in the structure, or, upon option, down to the horizontal focus closest to that location. In this last
case the position of the focus is calculated automatically in the same way as the position of the waist in IMAGE. Depending
on option IFOC, MATRIX also delivers the beam matrix and betatron phase advances or (case of a periodic structure) periodic
beam matrix and tunes, chromaticities and other global parameters.

Depending on the value of option IORD, different procedures follow

• If IORD = 0, MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC ).

• If IORD = 1, the first order transfer matrix [Rij ] is calculated, from a third order approximation of the coordinates. For
instance

Y + =

(
Y

T0

)
T0 +

(
Y

T 2
0

)
T 2
0 +

(
Y

T 3
0

)
T 3
0 , Y − = −

(
Y

T0

)
T0 +

(
Y

T 2
0

)
T 2
0 −

(
Y

T 3
0

)
T 3
0

will yield, neglecting third order terms,

R11 =

(
Y

T0

)
=

Y + − Y −

2T0

In addition, if OBJET, KOBJ = 5.01 is used (hence introducing initial optical function values, αY,Z , αY,Z , DY,Z , D′
Y,Z),

then, using the Rij above, MATRIX will transport the optical functions and phase advances φY , φZ , following




β
α
γ




at MATRIX

=




R2
11 −2R11R12 R2

12

−R11R21 R12R21 R11R12

R2
21 −2R21R22 R2

22







β
α
γ




at OBJET

∆φY = Atan
R12

(R11βY,objet −R12αY,objet)
, ∆φZ = Atan

R34

(R33βZ,objet −R34αZ,objet)
, (1)

φY,Z → φY,Z + 2π if φY,Z < 0, given [0, π] Atan determination

and print these out.

• If IORD = 2, fifth order Taylor expansions are used for the calculation of the first order transfer matrix [Rij ] and of the
second order matrix [Tijk]. Other higher order coefficients are also calculated.

An automatic generation of an appropriate object for the use of MATRIX can be obtained using the procedure OBJET (pages ??, ??),
as follows
- if IORD = 1, use OBJET (KOBJ = 5[.NN, NN=01,99]), that generates up to 99*11 sets of initial coordinates. In this case, up to
ninety nine matrices may be calculated, each one wrt. to the reference trajectory of concern.
- if IORD = 2, use OBJET (KOBJ = 6) that generates 61 sets of initial coordinates.

The next option, IFOC, acts as follows

• If IFOC = 0, the transfer coefficients are calculated at the location of MATRIX, and with respect to the reference trajectory.
For instance, Y + and T+ above are defined for particle number i as Y + = Y +(i)−Y (Ref), and T+ = T+(i)−T (ref.).

• If IFOC = 1, the transfer coefficients are calculated at the horizontal focus closest to MATRIX (determined automatically),
while the reference direction is that of the reference particle. For instance, Y + is defined for particle number i as Y + =
Y +(i)− Yfocus, while T+ is defined as T+ = T+(i)− T (ref.)).

• If IFOC = 2, no change of reference frame is performed : the coordinates refer to the current frame. Namely, Y + = Y +(i),
T+ = T+(i), etc.

• If IFOC = 10 + NPeriod, then, from the 1-turn transport matrix as obtained in the way described above, MATRIX calculates
periodic parameters characteristic of the structure such as optical functions and tune numbers, assuming that it is NPeriod -
periodic, and in the coupled hypothesis, based on the Edwards-Teng method [?].

If IORD = 2 additional periodic parameters are computed such as chromaticities, beta-function momentum dependence,
etc.

Addition of zgoubi.MATRIX.out next to IORD, IFOC will cause stacking of MATRIX output data into zgoubi.MATRIX.out file
(convenient for use with e.g. gnuplot type of data treatment software).
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MATRIX Calculation of transfer coefficients, periodic parameters

IORD, IFOC Options : 0-2, 0-1 or > 10 2*I [,A]
[, zgoubi.MATRIX.out] IORD = 0 : Same effect as FAISCEAU

IORD = 1 (normally using OBJET, KOBJ = 5) : First order transfer
matrix ; beam matrix, phase advance if using OBJET, KOBJ = 5.01 ;
if IFOC > 10 : periodic beam matrix, tune numbers
IORD = 2 (normally using OBJET, KOBJ = 6) : First order transfer
matrix [Rij ], second order array [Tijk] and higher order transfer
coefficients ; if IFOC > 10 : periodic parameters,

IFOC = 0 : matrix at actual location,
reference ≡ particle # 1
IFOC = 1 : matrix at the closest first order horizontal focus,
reference ≡ particle # 1
IFOC = 10 + NPER : same as IFOC = 0, and also calculates
the Twiss parameters, tune numbers, etc.
(assuming that the DATA file describes one period of a
NPER-period structure).

Including ’zgoubi.MATRIX.out’ will cause printout to zgoubi.MATRIX.out file
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MCDESINT : Monte-Carlo simulation of in-flight decay[?]

As soon as MCDESINT appears in a structure (normally, after OBJET or after CIBLE ), in-flight decay simulation starts. It must
be preceded by PARTICUL for the definition of mass M1 and COM lifetime τ1.
The two-body decay simulated is

1 −→ 2 + 3

The decay is isotropic in the center of mass. 1 is the incoming particle, with mass M1, momentum p1 = γ1M1β1c (relative

momentum D1 =
p1
q

1

BORO
with BORO = reference rigidity, defined in [MC]OBJET ), and position Y1, Z1 in the zgoubi

frame. 2 and 3 are decay products with respective masses and momenta M2, M3 and p2 = γ2M2β2c, p3 = γ3M3β3c.
The decay length s1 of particle 1 is related to its center of mass lifetime τ1 by

s1 = cτ1

√
γ2
1 − 1

The path length s up to the decay point is then calculated from a random number 0 < R1 ≤ 1 by using the exponential decay
formula

s = −s1ℓnR1

After decay, particle 2 will be ray-traced with assumed positive charge, while particle 3 is discarded. Its scattering angles in the
center of mass θ∗ and φ are generated from two other random numbers R2 and R3.
φ is a relativistic invariant, and θ in the laboratory frame (Fig. 1) is given by

tan θ =
1

γ1

sin θ∗

β1

β∗
2

+ cos θ∗

β∗
2 and momentum p2 are given by

γ∗
2 =

M2
1 +M2

2 −M2
3

2M1M2

β∗
2 =

(
1− 1

γ2

)1/2

γ2 = γ1γ
∗
2 (1 + β1β

∗
2 cos θ

∗)

p2 = M2

√
γ2
2 − 1

Finally, θ and φ are transformed into the angles T2 and P2 in the zgoubi frame, and the relative momentum takes the value

D2 =
p2
q

1

BORO
(where BORO is the reference rigidity, see OBJET ), while the starting position of M2 is (Y1, Z1, s1).

The decay simulation by zgoubi satisfies the following procedures. In optical elements and field maps, after each integration
step XPAS, the actual path length of the particle, F (6, I), is compared to its limit path length s. If s is passed, then the particle

is considered as having decayed at F (6, I) − XPAS
2

, at a position obtained by a linear translation from the position at F (6, I).
Presumably, the smaller XPAS, the smaller the error on position and angles at the decay point.
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Figure 1: At position M(X1, Y1, Z1), particle 1 decays into 2 and 3 ; zgoubi then proceeds with the com-
putation of the trajectory of 2, while 3 is discarded.
θ and φ are the scattering angles of particle 2 relative to the direction of the incoming particle 1 ;
they transform to T2 and P2 in zgoubi frame.

In ESL and CHANGREF, F (6, I) is compared to s at the end of the element. If the decay occurs inside the element, the particle
is considered as having decayed at its actual limit path length s, thus its coordinates at s are recalculated by translation.

The limit path length of all particles (I = 1, IMAX) is stored in the array FDES(6, I). For further statistical purposes (e.g., use
of HISTO ) the daughter particle 2 is tagged with an ′S′ standing for “secondary”. When a particle decays, its coordinates D, Y ,
T , Z, P , s, time at the decay point are stored in FDES(J, I), J = 1, 7.

A note on negative drifts :
The use of negative drifts with MCDESINT is allowed and correct. For instance, negative drifts may occur in a structure for some
of the particles when using CHANGREF (due to the Z-axis rotation or a negative XCE), or when using DRIFT with XL < 0.
Provision has been made to take it into account during the MCDESINT procedure, as follows.
If, due to a negative drift, a secondary particle reaches back the decay location of its parent particle, then the parent particle
is “resurrected “ with its original coordinates at that location, the secondary particle is discarded, and ray-tracing resumes in a
regular way for the parent particle which is again allowed to decay, after the same path length. This procedure is made possible
by prior storage of the coordinates of the parent particles (in array FDES(J, I)) each time a decay occurs.
Negative steps (XPAS< 0) in optical elements are not compatible with MCDESINT.
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MCDESINT 1 Monte-Carlo simulation of in-flight decay
M1 → M2 + M3

[INFO,] 2 M2, M3, τ2 3 [Switch,] ; masses of the two decay products; [-,] 2*MeV/c2, s [A4,] 3*E
COM lifetime of particle 2

I1, I2, I3 Seeds for random number generators 3*≃ 106 3*I

X

Z

Y
1

2

θφ

M

Y

X

Z1,2

1,2

T2T1

P2

P1

1,2

Particle 1 decays into 2 and 3 ; zgoubi then calculates trajectory of 2, while 3 is discarded. θ and φ are the scattering angles of
particle 2 relative to the direction of the incoming particle 1. They transform to T2 and P2 in Zgoubi frame.

1 MCDESINT must be preceded by PARTICUL , for the definition of the mass and lifetime of the incoming particle M1.
2 Presence of ’INFO’ will cause more info on decay kinematics parameters to be printed into zgoubi.res at each decay.
3 τ2 can be left blank, in which case the lifetime of particle 2 is set to zero (it decays immediately, which from a practical point of view means that it is not

tracked).

3



MCOBJET : Monte-Carlo generation of a 6-D object

MCOBJET generates a set of IMAX random 6-D initial conditions (the maximum value for IMAX is defined in the include file
’MAXTRA.H’). It can be used in conjunction with the keyword REBELOTE which either allows generating an arbitrarily high
number of initial conditions, or, in the hypothesis of a periodic structure, allows multi-turn tracking with initial conditions at pass
number IPASS identified with conditions at end of pass number IPASS − 1.

The first datum in MCOBJET is the reference rigidity (a negative value is allowed)

BORO =
p0
q

(kG.cm)

Depending on the value of the next datum, KOBJ, the IMAX particles have their initial random conditions Y , T , Z, P , X and D
(relative rigidity, Bρ/BORO) generated on 3 different types of supports, as described below.
Next come the data

KY,KT,KZ,KP,KX,KD

that specify the type of probability density for the 6 coordinates.
KY, KT, KZ, KP, KX can take the following values :

1. uniform density, p(x) = 1/2δx if −δx ≤ x ≤ δx, p(x) = 0 elsewhere,

2. Gaussian density, p(x) =
1

δx
√
2π

e
−

x2

2δx2 ,

3. parabolic density, p(x) =
3

4δx
(1− x2

δx2
) if −δx ≤ x ≤ δx, p(x) = 0 elsewhere.

KD can take the following values :

1. uniform density, p(D) = 1/2δD if −δD ≤ D ≤ δD, p(D) = 0 elsewhere,

2. exponential density, p(D) = N0 exp(C0 + C1l + C2l
2 + C3l

3) with 0 ≤ l ≤ 1 and −δD ≤ D ≤ δD,

3. p(D) is determined by a kinematic relation, namely, with T = horizontal angle, D = δD ∗ T .

Next come the central values for the random sorting,

Y0, T0, Z0, P0, X0, D0

namely, the probability density laws p(x) (x = Y, T, Z, P or X) and p(D) described above apply to the variables x − x0 (
≡ Y − Y0, T − T0, ...) and D −D0 respectively. Negative value for D0 is allowed (see section ??, page ??).

KOBJ = 1 : Random generation of IMAX particles in a hyper-window with widths (namely the half-extent for uniform or
parabolic distributions (KY,KT, ... = 1 or 3), and the r.m.s. width for Gaussian distributions (KY,KT, ... = 2))

δY, δT, δZ, δP, δX, δD

Then follow the cut-off values, in units of the r.m.s. widths δY , δT , ... (used only for Gaussian distributions, KY,KT, ... = 2)

NδY , NδT , NδZ , NδP , NδX , NδD

The last data are the parameters

N0, C0, C1, C2, C3

needed for generation of the D coordinate upon option KD = 2 (unused if KD = 1, 3) and a set of three integer seeds for
initialization of random sequences,

IR1, IR2, IR3 (all ≃ 106)

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g., with HISTO,
MCDESINT ).

KOBJ = 2 : Random generation of IMAX = IY ∗ IT ∗ IZ ∗ IP ∗ IX ∗ ID particles on a hyper-grid. The input data are the
number of bars in each coordinate

1



IY, IT, IZ, IP, IX, ID

the spacing of the bars

PY, PT, PZ, PP, PX, PD

the width of each bar

δY, δT, δZ, δP, δX, δD

the cut-offs, used with Gaussian densities (in units of the r.m.s. widths)

NδY , NδT , NδZ , NδP , NδX , NδD

This is illustrated in Fig. 1.

The last two sets of data in this option are the parameters

N0, C0, C1, C2, C3

needed for generation of the D coordinate upon option KD= 2 (unused if KD= 1, 3) and a set of three integer seeds for initializa-
tion of random sequences, IR1, IR2, and IR3 (all ≃ 106).
All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (see HISTO and
MCDESINT ).

KOBJ = 3 : Distribution of IMAX particles inside a 6-D ellipsoid defined by the three sets of data (one set per 2-D phase-space)

αY , βY ,
εY
π

, NεY [, N ′
εY , if NεY < 0]

αZ , βZ ,
εZ
π
, NεZ [, N ′

εZ , if NεZ < 0]

αX , βX ,
εX
π

, NεX [, N ′
εX , if NεX < 0]

where α, β are the ellipse parameters and ε/π the rms emittance, corresponding to an elliptical frontier
1 + α2

Y

βY
Y 2+2αY Y T +

βY T
2 = εY /π (idem for the (Z,P ) or (X,D) planes). NεY , NεZ and NεX are the sorting cut-offs (used only for Gaussian

distributions, KY,KT, ... = 2).
The sorting is uniform in surface (for KY = 1 or KZ = 1 or KX = 1) or Gaussian (KY = 2 or KZ = 2), and so on, as
described above. A uniform sorting has the ellipse above for support. A Gaussian sorting has the ellipse above for r.m.s. frontier,

leading to σY =
√
βY εY /π, σT =

√
(1 + α2

Y )

βY
εY /π, and similar relations for σZ , σP , σX , σD.

If Nε is negative, thus the sorting fills the elliptical ring that extends from |Nε| to N ′
ε (rather than the inner region determined by

the Nε cut-off as discussed above).
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Figure 1: A scheme of input parameters to MCOBJET when KOBJ= 2.
Top : Possible distributions of the Y coordinate.
Bottom : A 2-D grid in (Y,Z) space.
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MCOBJET Monte-Carlo generation of a 6-D object

BORO Reference rigidity kG.cm E

KOBJ Type of support of the random distribution 1-3 I
KOBJ= 1 : window
KOBJ= 2 : grid
KOBJ= 3 : phase-space ellipses

IMAX Number of particles to be generated ≤ 104 I

KY , KT , KZ, KP , Type of probability density 6*(1-3) 6*I
KX , KD 1

Y0, T0, Z0, P0, Mean value of coordinates (D0 = Bρ/BORO ) m, rad, m, 6*E
X0, D0 rad, m, no dim.

If KOBJ = 1 In a window

δY , δT , δZ, δP , Distribution widths, depending on KY , KT etc. 1 m, rad, m, 6*E
δX , δD rad, m, no dim.

NδY , NδT , NδZ , NδP , Sorting cut-offs (used only for Gaussian density) units of σY , σT , 6*E
NδX , NδD etc.

N0, C0, C1, C2, C3 Parameters involved in calculation of P(D) no dim. 5*E

IR1, IR2, IR3 Random sequence seeds 3*≃ 106 3*I

1 Let x = Y, T, Z, P or X . KY , KT , KZ, KP and KX can take the values

1 : uniform, p(x) = 1/2δx if −δx ≤ x ≤ δx

2 : Gaussian, p(x) = exp(−x2/2δx2)/δx
√
2π

3 : parabolic, p(x) = 3(1− x2/δx2)/4δx if −δx ≤ x ≤ δx

KD can take the values

1 : uniform, p(D) = 1/2δD if −δD ≤ x ≤ δD

2 : exponential, p(D) = No exp(C0 + C1l + C2l2 + C3l3) if −δD ≤ x ≤ δD

3 : kinematic, D = δD ∗ T
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If KOBJ = 2 On a grid

IY , IT , IZ, IP , Number of bars of the grid 6*I
IX , ID

PY , PT , PZ, PP , Distances between bars m, rad, m 6*E
PX , PD rad, m, no dim.

δY , δT , δZ, δP , Width of the bars (±) if uniform, ibidem 6*E
δX , δD Sigma value if Gaussian distribution

NδY , NδT , NδZ , NδP , Sorting cut-offs (used only for Gaussian density) units of σY , σT ,etc. 6*E
NδX , NδD

N0, C0, C1, C2, C3 Parameters involved in calculation of P (D) no dim. 5*E

IR1, IR2, IR3 Random sequence seeds 3*≃ 106 3*I

If KOBJ = 3 On a phase-space ellipse 1

αY , βY , εY /π, NσǫY
Ellipse parameters and no dim., m/rad, 4*E [,E]

[, N ′
σǫY

if NσǫY
< 0] 2 emittance, Y-T phase-space ; cut-off m, units of σ(εY )

αZ , βZ , εZ/π, NσǫZ
Ellipse parameters and no dim., m/rad, 4*E [,E]

[, N ′
σǫZ

if NσǫZ
< 0] 2 emittance, Z-P phase-space ; cut-off m, units of σ(εZ)

αX , βX , εX/π, NσǫX
Ellipse parameters and no dim., m/rad, 4*E [,E]

[, N ′
σǫX

if NσǫX
< 0] 2 emittance, X-D phase-space ; cut-off m, units of σ(εX)

IR1, IR2, IR3 Random sequence seeds 3*≃ 106 3*I

1 Similar possibilities, non-random, are offered with OBJET, KOBJ=8 (p. ??)
2 Works with Gaussian density type only : sorting within the ellipse fron-

tier
1 + σ2

Y

β2
Y

Y 2 + 2αY Y T + βY T 2 =
εY

π

if NσǫY
> 0, or, if NσǫY

< 0 sorting within the ring

[ |NσǫY
|, N ′

σǫY
]
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MULTIPOL : Magnetic multipole

The simulation of multipolar magnetic field ~M by MULTIPOL proceeds by addition of the dipolar ( ~B1), quadrupolar ( ~B2),
sextupolar ( ~B3), etc., up to 20-polar ( ~B10) components, and of their derivatives up to fourth order, following

~M = ~B1 + ~B2 + ~B3 + ... + ~B10

∂ ~M

∂X
=

∂ ~B1

∂X
+

∂ ~B2

∂X
+

∂ ~B3

∂X
+ ... +

∂ ~B10

∂X

∂2 ~M

∂X∂Z
=

∂2 ~B1

∂X∂Z
+

∂2 ~B2

∂X∂Z
+

∂2 ~B3

∂X∂Z
+ ... +

∂2 ~B10

∂X∂Z
etc.

The independent components ~B1, ~B2, ~B3, ..., ~B10 and their derivatives up to the fourth order are calculated as described in
section ??.

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone XE at entrance and XS

at exit, as for QUADRUPO, and by the extent λE at entrance, λS at exit. The fringe field extents for the dipole component are
λE and λS . The fringe field for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient E2 (E3, ..., E10)
at entrance, and S2 (S3, ..., S10) at exit, such that the extent is λE ∗E2 (λE ∗E3, ..., λE ∗E10) at entrance and λS ∗S2 (λS ∗S3,
..., λS ∗ S10) at exit.

If λE = 0 (λS = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, XE (XS) is forced
to zero (for the mere purpose of saving computing time). If Ei = 0 (Si = 0) (i = 2, 10), the entrance (exit) fringe field for the
multipole component i is considered as a sharp edge field. In sharp edge field model, the wedge angle vertical first order focusing
effect (if ~B1 is non zero) is simulated at magnet entrance and exit by a kick P2 = P1 − Z1 tan(ǫ/ρ) applied to each particle
(P1, P2 are the vertical angles upstream and downstream of the EFB, Z1 is the vertical particle position at the EFB, ρ the local
horizontal bending radius and ǫ the wedge angle experienced by the particle ; ǫ depends on the horizontal angle T).

Any multipole component ~Bi can be rotated independently by an angle RXi around the longitudinal X-axis, for the simulation
of positioning defects, as well as skew lenses.

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic struc-
tures (section ??).
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MULTIPOL Magnetic Multipole

IL IL = 1, 2[×10n] : print field and coordinates along trajectories 0-2[×10n] I

XL, R0, B1, B2, ..., B10, Length of element ; radius at pole tip ; 2*cm,10*kG 12*E
field at pole tip for dipole, quadrupole,
..., dodecapole components

Entrance face
XE , λE , E2, ..., E10 Integration zone ; fringe field extent : 2*cm,9*no dim. 11*E

dipole fringe field extent = λE ;
quadrupole fringe field extent = λE ∗ E2 ;
...
20-pole fringe field extent = λE ∗ E10

(sharp edge if field extent is zero)

NCE, C0 − C5 same as QUADRUPO 0-6, 6*no dim. I, 6*E

Exit face
XS , λS , S2, ..., S10 Integration zone ; as for entrance 2*cm, 9*no dim. 11*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

R1, R2, R3, ..., R10 Skew angles of field components 10*rad 10*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-3, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

for QUADRUPO.
KPOS = 3 : effective only if B1 6= 0 :
entrance and exit frames are shifted by YCE
and tilted wrt. the magnet by an angle of
• either ALE if ALE6=0
• or 2Arcsin(B1XL / 2BORO) if ALE=0
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OBJET : Generation of an object

OBJET is dedicated to the construction of sets of initial coordinates, in several ways.

The first datum is the reference rigidity (a negative value is allowed)

BORO =
p0
q

At the object, the beam is defined by a set of IMAX particles (the maximum value for IMAX is defined in the include file
’MAXTRA.H’) with the initial conditions (Y , T , Z, P , X , D) with D = Bρ/BORO the relative rigidity.
Depending on the value of the next datum KOBJ, these initial conditions may be generated in eight different ways :

KOBJ = 1 : Defines a grid in the Y , T , Z, P , X , D space. One gives the number of points desired

IY, IT, IZ, IP, IX, ID

with IY ≤ nY . . . ID ≤ nD such that nY × nT × ...× nD ≤ max(IMAX). One defines the sampling range in each coordinate

PY, PT, PZ, PP, PX, PD

zgoubi then generates IMAX = IY ∗ IT ∗ IZ ∗ IP ∗ IX ∗ ID particles with initial coordinates

0, ±PY, ±2 ∗ PY, . . . , ±IY/2 ∗ PY,
0, ±PT, ±2 ∗ PT, . . . , ±IT/2 ∗ PT,
0, ±PZ, ±2 ∗ PZ, . . . , ±IZ/2 ∗ PZ,
0, ±PP, ±2 ∗ PP, . . . , ±IP/2 ∗ PP,
0, ±PX, ±2 ∗ PX, . . . , ±IX/2 ∗ PX,
0, ±PD, ±2 ∗ PD, . . . , ±ID/2 ∗ PD,

In this option relative rigidities will be classified automatically in view of possible further use of IMAGES[Z] for momentum
analysis and image formation.
The particles are tagged with an index IREP possibly indicating a symmetry with respect to the (X ,Y ) plane, as explained in
option KOBJ= 3. If two trajectories have mid-plane symmetry, only one will be ray-traced, while the other will be deduced using
the mid-plane symmetries. This is done for the purpose of saving computing time. It may be incompatible with the use of some
procedures (e.g. MCDESINT, which involves random processes).
The last datum is a reference in each coordinate, YR,TR,ZR,PR,XR,DR. For instance the reference rigidity is DR∗ BORO,
resulting in the rigidity of a particle of initial condition I ∗ PD to be (DR+ I ∗ PD) ∗ BORO.

KOBJ = 1.01: Same as KOBJ= 1 except for the Z symmetry. The initial Z and P conditions are the following

0, PZ, 2 ∗ PZ, . . . , (IZ − 1) ∗ PZ,
0, PP, 2 ∗ PP, . . . , (IP − 1) ∗ PP,

This object results in shorter outputs/CPU-time when studying problems with Z symmetry.

KOBJ = 2 : Next data : IMAX, IDMAX . Initial coordinates are entered explicitly for each trajectory. IMAX is the total number
of particles. These may be classified in groups of equal number for each value of momentum, in order to fulfill the requirements
of image calculations by IMAGES[Z]. IDMAX is the number of groups of momenta. The following initial conditions defining a
particle are specified for each one of the IMAX particles

Y, T, Z, P, X, D, ′A′

where D ∗ BORO is the rigidity (negative value allowed) and ′A′ is a (arbitrary) tagging character.
The last record IEX (I=1, IMAX) contains IMAX times either the character “1” to indicates that the particle has to be tracked, or
“-9” to indicates that the particle should not be tracked.
This option KOBJ= 2 may be be useful for the definition of objects including kinematic effects.

KOBJ = 2.01: Same as KOBJ= 2 except for the units, meter and radian in that case.

KOBJ = 3 : This option allows the reading of initial conditions from an external input file FNAME.
The next three data lines are :

IT1, IT2, ITStep
IP1, IP2, IPStep
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YF, TF, ZF, PF, SF, DPF, TiF, TAG
YR, TR, ZR, PR, SR, DPR, TiR
InitC

followed by the storage file name FNAME.
IT1, IT2, ITStep cause the code to read coordinates of particles number IT1 through IT2 by step ITStep.
IP1, IP2, IPStep cause the code to read coordinates belonging in the passes range IP1 through IP2, step IPStep.
YF, TF, ZF, PF, SF, DPF, TiF are scaling factors whereas YR, TR, ZR, PR, SR, DPR, TiR are references added to

the values of respectively Y, T, Z, P, S, DP as read in file FNAME, so that any coordinate C = Y, T, Z... is changed into CF*C +
CR. In addition a flag character TAG allows retaining only particles with identical tagging letter LET, unless TAG=’*’ in which
case it has no selection effect - for instance TAG=’S’ can be used to retain only secondary particles following in-flight decay
simulations.
If InitC= 1 ray-tracing starts from the current coordinatesF (J, I),
if InitC= 0 ray-tracing starts from the initial coordinates FO(J, I), as read from file FNAME.
The file FNAME must be formatted in the appropriate manner. The following FORTRAN sequence is an instance, details and
possible updates are to be found in the source file ’obj3.f’ :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’)
DO I = 1, IMAX
READ (NL,100) LET (I), IEX(I), (FO(J,I),J=1,6), (F(J,I),J=1,6), I, IREP(I),
> LET(I),IEX(I),-1.D0+FO(1,I),(FO(J,I),J=2,MXJ),
> -1.D0+F(1,I),F(2,I),F(3,I),
> (F(J,I),J=4,MXJ),ENEKI,
> ID,I,IREP(I), SORT(I),D,D,D,D,RET(I),DPR(I),
> D, D, D, BORO, IPASS, KLEY,LBL1,LBL2,NOEL
100 FORMAT(1X,
C1 LET(IT),KEX, 1.D0-FO(1,IT),(FO(J,IT),J=2,MXJ),
1 A1,1X,I2,1P,7E16.8,
C2 1.D0-F(1,IT),(FO(J,IT),J=2,MXJ),
2 /,3E24.16,
C3 Z,P*1.D3,SAR, TAR, DS,
3 /,4E24.16,E16.8,
C4 KART, IT,IREP(IT),SORT(IT),X, BX,BY,BZ, RET(IT), DPR(IT),
4 /,I1,2I6,7E16.8,
C5 EX,EY,EZ, BORO, IPASS, KLEY, (LABEL(NOEL,I),I=1,2),NOEL
5 /,4E16.8, I6,1X, A8,1X, 2A10, I5)
ENDDO

where the meaning of the parameters (apart from D=dummy real, ID=dummy integer) is the following

LET(I) : one-character string (for tagging)
IEX(I) : flag, see KOBJ= 2 and page ??
FO(1-6,I) : coordinates D, Y , T , Z, P and path length of particle number I , at the

origin. D ∗ BORO = rigidity
F(1-6,I) : id, at the current position.

IREP is an index which indicates a symmetry with respect to the median plane. For instance, if Z(I + 1) = −Z(I), then
normally IREP(I + 1) = IREP(I). Consequently the coordinates of particle I + 1 will not be obtained from ray-tracing but
instead deduced from those of particle I by simple symmetry. This saves on computing time.

KOBJ= 3 can be used directly for reading files filled by FAISCNL, FAISTORE.
If more than IMAX particles are to be read from a file, use REBELOTE.

Note : In this option, one has to make sure that input data do not conflict with possible use of the keyword PARTICUL that
assigns mass and charge.

KOBJ = 3.01: Same as KOBJ = 3, except for the formatting of trajectory coordinate data in FNAME, namely, according to the
following FORTRAN sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’)
1 CONTINUE
READ (NL,*,END=10,ERR=99) Y, T, Z, P, S, D
GOTO 1
10 CALL ENDFIL
99 CALL ERREAD

KOBJ = 3.02: As for KOBJ=3.01, except for the different format
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READ(NL,*) X,Y,Z,PX,PY,PZ

where PX, PY, and PZ, are the momenta in MeV/c. Note that DPR will be ignored in this case.

KOBJ = 3.03: As for KOBJ=3.01, except for the different format :

READ(NL,*) DP,Y,T,Z,P,S,TIME,MASS,CHARGE

where MASS is the mass in MeV/c and CHARGE is the charge in units of the elementary charge.

Note : For details and possible updates in the formatted read of concern in the FORTRAN, regarding options 3.01-3.03, see the
source file ’obj3.f’.

KOBJ = 5 : Mostly dedicated to the calculation of first order transfer matrix and various other optical parameters, using for
instance MATRIX or TWISS. The input data are the coordinate sampling

PY, PT, PZ, PP, PX, PD

The code generates 11 particles, with initial coordinates

0, ±PY, ±PT, ±PZ, ±PP, ±PX, ±PD

These values should be small enough, so that the paraxial ray approximation be valid. The last data line gives the reference

Y R, TR, ZR, PR, XR, DR

(with DR ∗ BORO the reference rigidity - negative value allowed), which adds to the previous coordinate values.

KOBJ = 5.01: Same as KOBJ = 5, except for an additional data line giving initial beam ellipse parameters and dispersions,
αY , βY , αZ , βZ , αX , βX , DY , D′

Y , DZ , D′
Z , for further transport of these using MATRIX, or for possible use by the FIT[2]

procedure.

KOBJ = 5.NN: Like KOBJ = 5, except for NN = 02−99 references needed in this case (thus NN-1 additional input data lines),
rather than just one. Zgoubi will generate NN sets of 11 particles with initial coordinates in each set taken wrt. one of the NN
references.

A subsequent use of MATRIX would then cause the computation of NN transport matrices.

KOBJ = 6: Mostly dedicated to the calculation of first, second and other higher order transfer coefficients and various other
optical parameters, using for instance MATRIX. The input data are the coordinate sampling (normally taken paraxial)

PY, PT, PZ, PP, PX, PD

to allow the building up of an object containing 61 particles (note : their coordinates can be checked by printing out into zgoubi.res
using FAISCEAU ), whereas a last data line gives the reference

Y R, TR, ZR, PR, XR, DR

(with DR ∗ BORO the reference rigidity - negative value allowed), which adds to the previous coordinate values.

KOBJ = 7 : Object with kinematics
The data and functioning are the same as for KOBJ= 1, except for the following

• ID is not used,

• PD is the kinematic coefficient, such that for particle number I , the initial relative rigidity DI is calculated from the initial
angle TI following

DI = DR+ PD ∗ TI

while TI is in the range
0, ±PT, ±2 ∗ PT, . . . , ±IT/2 ∗ PT

as stated under KOBJ= 1
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KOBJ = 8 : Generation of phase-space coordinates on ellipses.
The ellipses are defined by the three sets of data (one set per ellipse)

αY , βY , εY /π
αZ , βZ , εZ/π
αX , βX , εX/π

where α, β are the ellipse parameters and ε/ is the ellipse surface, corresponding to an ellipse with equation

1 + α2
Y

βY
Y 2 + 2αY Y T + βY T

2 = εY /π

(idem for the (Z,P ) or (X,D) planes).

The ellipses are centered respectively on (Y0, T0), (Z0, P0), (X0, D0).

The number of samples per plane is respectively IX, IY, IZ. If that value is zero, the central value above is assigned.

4



OBJET Generation of an object

BORO Reference rigidity kG.cm E

KOBJ[.K2] Option index [.More options] 1-6 I

If KOBJ = 1[.01] [Non-] Symmetric object

IY, IT, IZ, IP, IX, ID Ray-Tracing assumes mid-plane symmetry IY*IT*IZ*IP*IX*ID ≤ 104 6*1
Total number of points in ±Y , ±T , ±Z, ±P
[+Z, +P with KOBJ = 1.01], ±X .
and ±D coordinates (IY ≤ 20,...,ID ≤ 20)

PY, PT, PZ, PP, PX, PD Step size in Y , T , Z, P , X and momentum 2(cm,mrad), cm, no dim. 6*E
(PD = δBρ/BORO )

YR, TR, ZR, PR, XR, DR Reference (DR = Bρ/BORO ) 2(cm,mrad), cm, no dim. 6*E

If KOBJ = 2[.01] All the initial coordinates must be entered explicitly

IMAX, IDMAX total number of particles ; number of distinct momenta IMAX ≤ 104 2*I
(if IDMAX > 1, group particles of same momentum)

For I = 1, IMAX Repeat IMAX times the following line

Y, T, Z, P, X, D, LET Coordinates and tagging of the IMAX particles ; 2(cm,mrad), cm, no dim., 6*E, A1
If KOBJ = 2.01 input units are different : 2(m,rad), m, no dim.,

IEX(I = 1, IMAX) IMAX times 1 or -9. If IEX(I) = 1 trajectory I is 1 or -9 IMAXI
ray-traced, it is not if IEX(I) = −9.

If KOBJ=3[.NN,
NN=00. . . 03] Reads coordinates from a storage file

NN=00 (default) : [b ]zgoubi.fai like data file FORMAT
NN=01 : read FORMAT is ‘‘READ(NL,*) Y,T,Z,P,S,DP’’

NN=02 : read FORMAT is ‘‘READ(NL,*) X,Y,Z,PX,PY,PZ’’

NN=03 : read FORMAT is ‘‘READ(NL,*) DP,Y,T,Z,P,S,TIME,MASS,CHARGE’’

IT1, IT2, ITStep Read particles numbered IT1 to IT2, step ITStep ≥ 1, ≥ IT1, ≥ 1 3*I
(For more than 104 particles stored in FNAME,
use ‘REBELOTE ’)

IP1, IP2, IPStep Read particles that belong in pass numbered ≥ 1, ≥ IP1, ≥ 1 3*I
IP1 to IP2, step IPStep

YF, TF, ZF, PF, Scaling factor. TAG-ing letter : no effect if ’*’, 7*no.dim, char. 7*E, A1
XF, DF, TF, TAG otherwise only particles with TAG≡LET are retained.

YR, TR, ZR, PR, Reference. Given the previous line of data, 2(cm, mrad), 7*E
XR, DR, TR all coordinate C is transformed to C*CF+CR cm, no dim.,µs

InitC 0 : set new ~R0 = old ~R0, new ~R = old ~R ; 0-1 I
1 : set new ~R0 = old ~R, new ~R = old ~R ;
2 : save old ~R in new ~R0, set new ~R = old ~R0.

FNAME File name (e.g., zgoubi.fai) A80
(NN in KOBJ=3.NN determines storage FORMAT)

If KOBJ = 5[.NN,
NN=01,99] Generation of 11 particles, or 11*NN if I ≥ 2 (for use with MATRIX , IORD = 1)
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PY, PT, PZ, PP, PX, PD Step sizes in Y , T , Z, P , X and D 2(cm,mrad), cm, no dim. 6*E

YR, TR, ZR, PR, XR, DR Reference trajectory (DR = Bρ/BORO ) 2(cm,mrad), cm, no dim. 6*E

If KOBJ = 5.01 additional data line :
αY , βY , αZ , βZ , αX , βX , Initial beam ellipse parameters 1 2(no dim.,m), ?, ?, 6*E,
DY , D

′
Y , DZ , D

′
Z 2(m,rad) 4*E

If KOBJ = 5.NN,
NN=02-99 i = 1 to 98 (if, resply , NN=02 to 99) additional data lines :

YR, TR, ZR, PR, XR, DR Reference trajectory # i (DR = Bρ/BORO ) 2(cm,mrad), cm, no dim. 6*E

If KOBJ = 6 Generation of 61 particles (for use with MATRIX , IORD = 2)

PY, PT, PZ, PP, PX, PD Step sizes in Y , T , Z, P , X and D 2(cm,mrad), cm, no dim. 6*E

YR, TR, ZR, PR, XR, DR Reference trajectory ; DR = Bρ/BORO 2(cm,mrad), cm, no dim. 6*E

If KOBJ = 7 Object with kinematics

IY, IT, IZ, IP, IX, ID Number of points in ±Y , ±T ,±Z, ±P , IY*IT*IZ*IP*IX*ID≤ 104 6*I
±X ; ID is not used

PY, PT, PZ, PP, PX, PD Step sizes in Y , T , Z, P and X ; PD = kinematic 2(cm,mrad), cm, mrad−1 6*E
coefficient, such that D(T ) = DR+ PD ∗ T

YR, TR, ZR, PR, XR, DR Reference (DR = Bρ/BORO ) 2(cm,mrad), cm, no dim. 6*E

If KOBJ = 8 Generation of phase-space coordinates on ellipses 2

IY , IZ, IX Number of samples in each 2-D phase-space ; 0 ≤ IX, IY, IZ ≤ IMAX, 3*I
if zero the central value (below) is assigned 1 ≤ IX ∗ IY ∗ IZ ≤ IMAX

Y0, T0, Z0, P0, Central values (D0 = Bρ/BORO ) m, rad, m, rad, 6*E
X0, D0 m, no dim.

αY , βY , εY /π ellipse parameters and emittances no dim., m, m 3*E
αZ , βZ , εZ/π no dim., m, m 3*E
αX , βX , εX/π no dim., m, m 3*E

1 They can be transported by using MATRIX
2 Similar possibilities, random, are offered with MCOBJET, KOBJ=3 (p. ??)
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OBJETA : Object from Monte-Carlo simulation of decay reaction [?]

This generator simulates the reactions

M1 +M2 −→ M3 +M4

and then

M4 −→ M5 +M6

where M1 is the mass of the incoming body ; M2 is the mass of the target ; M3 is an outgoing body ; M4 is the rest mass of the
decaying body ; M5 and M6 are decay products. Example :

p+ d −→3 He + η

η −→ µ+ + µ−

The first input data are the reference rigidity
BORO = p0/q

an index IBODY which specifies the particle to be ray-traced, namely M3 (IBODY = 1), M5 (IBODY = 2) or M6 (IBODY = 3).
In this last case, initial conditions for M6 must be generated by a first run of OBJETA with IBODY = 2 ; they are then stored in
a buffer array, and restored as initial conditions at the next occurrence of OBJETA with IBODY = 3. Note that zgoubi by default
assumes positively charged particles.

Another index, KOBJ, specifies the type of distribution for the initial transverse coordinates Y , Z ; namely either uniform
(KOBJ= 1) or Gaussian (KOBJ= 2). The other three coordinates T , P and D are deduced from the kinematic of the reactions.

The next data are the number of particles to be generated, IMAX, the masses involved in the two previous reactions.

M1, M2, M3, M4, M5, M6

and the kinetic energy T1 of the incoming body (M1).
Then one gives the central value of the distribution for each coordinate

Y0, T0, Z0, P0, D0

and the width of the distribution around the central value

δY, δT, δZ, δP, δD

so that only those particles in the range

Y0 − δY ≤ Y ≤ Y0 + δY . . . D0 − δD ≤ D ≤ D0 + δD

will be retained. The longitudinal initial coordinate is uniformly sorted in the range

−XL ≤ X0 ≤ XL

The random sequences involved may be initialized with different values of the two integer seeds IR1 and IR2 (≃ 106).

Possible use of PARTICUL will have no effect : it will not change the mass and charge assumptions as set by OBJETA.
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0.1 Declaring Options
A series of options are available which allow the control of various of the procedures and functionalities of the code.

Some of these options are normally declared right after the object definition, for instance
- SPNTRK : switch-on spin tracking,
- PARTICUL to declare particle mass and charge, if for instance tracking in electric fields, or tracking spin, or in presence

of synchrotron radiation energy loss simulations,

some may appear further down in the structure (in zgoubi.dat), for instance
- MCDESINT : switch-on in-flight decay, could be after a target,
- REBELOTE : for multi-turn tracking, including an extraction line section for instance,

others may normally be declared at the end of zgoubi.dat data pile, for instance
- END : end of a problem,
- FIT : fitting procedure - can also appear before REBELOTE

GETFITVAL is an exception rule in that it may appear before the object definition (thus becoming the first keyword in zgoubi.dat
data list). This is the case if variables prior saved following a ’FIT[2] ’ procedure and then read using GETFITVAL, happen to
belong in the object input data list.

SYSTEM as well, is liable to appear anywhere in the data list.
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OBJETA Object from Monte-Carlo simulation of decay reaction

M1 +M2 −→ M3 +M4 and M4 −→ M5 +M6

BORO Reference rigidity kG.cm E

IBODY, KOBJ Body to be tracked : M3 (IBODY=1), M5 (IBODY=2) 1-3,1-2 2*I
M6 (IBODY=3) ; type of distribution for Y0 and Z0 :
uniform (KOBJ= 1) or Gaussian (KOBJ= 2)

IMAX Number of particles to be generated (use ≤ 104 I
‘REBELOTE ’ for more)

M1 −M6 Rest masses of the bodies 6*GeV/c2 6*E

T1 Kinetic energy of incident body GeV E

Y0, T0, Z0, P0, D0 Only those particles in the range 2(cm,mrad), 5*E
Y0 − δY ≤ Y ≤ Y0 + δY no dim.

........
D0 − δD ≤ D ≤ D0 + δD
will be retained

δY , δT , δZ, δP , δD 2(cm,mrad), 5*E
no dim.

XL Half length of object : −XL ≤ X0 ≤ XL cm E
(uniform random distribution)

IR1, IR2 Random sequence seeds 2*≃ 06 2*I
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OCTUPOLE : Octupole magnet (Fig. 1)

The meaning of parameters for OCTUPOLE is the same as for QUADRUPO. In fringe field regions the magnetic field ~B(X,Y, Z)
and its derivatives up to fourth order are derived from the scalar potential approximated to the 8-th order in Y and Z

V (X,Y, Z) =

(
G− G′′

20
(Y 2 + Z2) +

G ′′′′

960
(Y 2 + Z2)2

)
(Y 3Z − Y Z3)

with G0 =
B0

R3
0

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. ??.

Outside fringe field regions, or everywhere in sharp edge dodecapole (λE = λS = 0) , ~B(X,Y, Z) in the magnet is given by

BX = 0

BY = G0(3Y
2 − Z2)Z

BZ = G0(Y
2 − 3Z2)Y

Figure 1: Octupole magnet
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OCTUPOLE Octupole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length ; radius and field at pole tip of the element 2*cm, kG 3*E

Entrance face :
XE , λE Integration zone ; 2*cm 2*E

Fringe field extent (λE = 0 for sharp edge)

NCE, C0 − C5 NCE = unused any, 6*no dim. I, 6*E
C0 − C5 = fringe field coefficients
such that : G(s) = G0/(1 + exp P (s)), with G0 = B0/R

3
0

and P (s) =
∑5

i=0 Ci(s/λ)
i

Exit face :
XS , λS Parameters for the exit fringe field ; see entrance 2*cm 2*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

Octupole magnet

2



OPTICS : Write out optical functions

OPTICS normally appears next to object definition, it normally works in conjunction with element label(s).
OPTICS causes the transport and write out, in zgoubi.res, of the 6×6 beam matrix, following options KOPT and ’label ’, below.

IF KOPT=0 : Off
IF KOPT=1 : Will transport the optical functions with initial values as specified in OBJET, option KOBJ=5.01.

Note : The initial values in OBJET[KOBJ=5.01] may be the periodic ones, as obtained, for instance, from a first run using
MATRIX[IFOC=11].

A second argument, ’label ’, allows
- if label = all : printing out, into zgoubi.res, after all keywords of the zgoubi.dat structure,
- otherwise, printing out at all keyword featuring LABEL ≡ label as a first label (see section ??, page ??, regarding the

labelling of keywords).

A third argument, IMP=1, will cause saving of the transported beta functions into file zgoubi.OPTICS.out.
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OPTICS Write out optical functions

IOPT, label, IMP IOPT = 0/1 : Off/On. Transport the beam matrix ; 0-1, string, 0-1 I, A, I
’label’ : Can be ’all’, ’ALL’, or existing ’LABEL 1(NOEL)’ ;
IMP = 1 causes storage of optical functions in zgoubi.OPTICS.out.
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OPTIONS : Global options

OPTIONS allows switching various options.

Available, for now :

- Inhibit (most of) write statements to zgoubi.res
Form of the statement : “WRITE -1”
Back to normal : “WRITE +1”
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OPTIONS Global options

IOPT, NBOP IOPT = 0/1 : Off/On. NBOP : total number of options. 0-1, ≥ 0 2*I

NBOP lines should follow. Possible choices :

WRITE, ±1 -1 inhibites (most of) write statements to zgoubi.res ’WRITE’, ±1 A,I
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ORDRE : Taylor expansions order

The position ~R and velocity ~u of a particle are obtained from Taylor expansions as described in eq. (??). By default, these
expansions are up to the fifth order derivative of ~u,

~R1 ≈ ~R0 + ~u∆s+ ...+ ~u(5) ∆s6

6!

~u1 ≈ ~u+ ~u ′∆s+ . . .+ ~u(5) ∆s5

5!

which corresponds to fourth order derivatives of fields ~B, eq. (??). and of ~E, eq. (??).
However, third or higher order derivatives of fields may be zero in some optical elements, for instance in a sharp edge quadrupole.
Also, in several elements, no more than first and second order field derivatives are implemented in the code. One may also wish to
save on computation time by limiting the time-consuming calculation of lengthy (while possibly ineffective in terms of accuracy)
Taylor expansions.

In that spirit, the purpose of ORDRE, option IO = 2−5, is to allow for expansions to the ~u(n) term in eq. ??. Default functioning
is IO = 4, stated in FORTRAN file block.f.

Note the following :
As concerns the optical elements

DECAPOLE, DODECAPO, EBMULT, ELMULT, MULTIPOL, OCTUPOLE,
QUADRUPO, SEXTUPOL

field derivatives (see eq. ?? p. ??, eq. ?? p. ??,) have been installed in the code according to ~u(5) Taylor development order ; it
may not be as complete for other optical elements. In particular, in electric optical elements field derivatives (eq. ??) are usually
provided to no more than second order, which justifies saving on computing time by means of ORDRE, so to avoid pushing
Taylor expansions as high as ~u(5).

NOTE : see also the option IORDRE in field map declarations (DIPOLE-M, TOSCA, etc.).
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ORDRE Taylor expansions order

IO Taylor expansions of ~R and ~u up to ~u(IO) 2-5 I
(default is IO = 4 )

2



PARTICUL : Particle characteristics

Since zgoubi works using the rigidity, (BORO, as declared in [MC]OBJET ), PARTICUL only needs be introduced (normally,
following [MC]OBJET in the input data file zgoubi.dat) when the definition of some characteristics of the particles (mass, charge,
gyromagnetic factor, life-time in the center of mass) is needed, as is the case when using the following procedures :

CAVITE : mass, charge
MCDESINT : mass, COM life-time
SPNTRK : mass, gyromagnetic factor
SRLOSS : mass, charge
SYNRAD : mass, charge
Electric and Electro-Magnetic elements : mass, charge

The declaration of PARTICUL must precede these keywords.

If PARTICUL is omitted, which is in general the case when ray-tracing ions in purely magnetic optical assemblies, then zgoubi,
since it only knows the rigidity, will skip the computation of such quantities as time of flight.
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PARTICUL Particle characteristics

M , Q, G, τ , X Mass ; charge ; gyromagnetic factor ; COM life-time ; unused MeV/c2, C, no dim., s 5*E

If M is of the form {M1 M2}, then when masses are assigned to particles from a previously defined object, the first half of the
particles are given the mass M1, and the second half are given the mass M2.
If Q is zero, the reference charge is left unchanged.
NOTE : Only the parameters of concern need their value be specified (for instance M , Q when electric lenses are used) ; others
can be set to zero.
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PICKUPS : Beam centroid path; closed orbit

PICKUPS computes the coordinates of the beam centroid, at one or more LABEL’ed keyword(s). These coordinates are the
average values of the coordinates of the particles in a bunch. That (list of) LABEL(s) is specified by the user, as part of the
arguments under the keyword PICKUPS.

In conjunction with REBELOTE in the case of a periodic structure, PICKUPS thus effectively delivers the closed orbit coordi-
nates.
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PICKUPS Beam centroid path; closed orbit

N 0 : inactive
≥ 1 : number of LABELs at which beam centroid is computed ≥ 0 I

For I = 1, N A list of N keywords’ labels follows

LABEL1 [,LABEL2, [...]] The N labels at which beam centroid is to be computed/recorded. N string(s) N*A10
In case a “LABELi” in the list does not exist, it is peacefully ignored.

Example
A trick :

’PICKUPS’
1
none labelA labelB ...

This is a possible way to inhibited an earlier use of PICKUPS with “labelA, labelB, ...” keyword list. It is sufficient (and
necessary) for that, that no keyword in zgoubi.dat data list has “none” as a its first LABEL.
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PLOTDATA : Intermediate output for the PLOTDATA graphic software [?]

PLOTDATA was at the origin implemented for the purpose of plotting particle coordinates using the TRIUMF PLOTDATA
package. However nothing precludes using it with a different aim.

The PLOTDATA keyword can be introduced at up to 20 locations in zgoubi.dat. There, particle coordinates will be stored in a
local array, FF. They are overwritten at each pass. Usage of FF is left to the user, see FORTRAN subroutine pltdat.f.
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PLOTDATA Intermediate output for the PLOTDATA graphic software

To be documented.
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POISSON :Read magnetic field data from POISSON output

This keyword allows reading a field profile B(X) from POISSON output. Let FNAME be the name of this output file (normally,
FNAME = outpoi.lis) ; the data are read following the FORTRAN statements here under

I = 0
11 CONTINUE
I = I + 1
READ(LUN,101,ERR=10,END=10) K, K, K, R, X(I), R, R, B(I)
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTO 11
10 CONTINUE
...

where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh. K’s and R’s are
dummy variables appearing in the POISSON output file outpoi.lis but not used here.

From this field profile, a 2-D median plane map is built, with a rectangular and uniform mesh ; mid-plane symmetry is assumed.
The field at each node (Xi, Yj) of the map is B(Xi), independent of Yj (i.e., the distribution is uniform in the Y direction).

For the rest, POISSON works in a way similar to CARTEMES.
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POISSON Read magnetic field data from POISSON output

IC, IL IC = 1, 2 : print the field map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories.

BNORM, XN,YN Field and X-,Y-coordinate normalization coeffs. 3*no dim. 3*E

TITL Title. Start with “FLIP” to get field map X-flipped A80

IX , IY Number of longitudinal and transverse nodes ≤ 400, ≤ 200 2*I
of the uniform mesh

FNAME 1 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Degree of interpolation polynomial 2, 25 or 4 I
as for DIPOLE-M

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 FNAME (e.g., ‘‘outpoi.lis’’) contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details
and possible updates are to be found in the source file ’fmapw.f’ :

I = 0
11 CONTINUE
I = I+1
READ(LUN,101,ERR=99,END=10) K, K, K, R, X(I), R, R, B(I)
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTO II
10 CONTINUE

where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh.
K’s and R’s are variables appearing in the POISSON output file outpoi.lis, not used here.
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POLARMES : 2-D polar mesh magnetic field map

Similar to CARTEMES, apart from the polar mesh frame : IX is the number of angular nodes, JY the number of radial nodes ;
X(I) and Y (J) are respectively the angle and radius of a node (these parameters are similar to those entering in the definition of
the field map in DIPOLE-M ).
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POLARMES 2-D polar mesh magnetic field map
mid-plane symmetry is assumed

IC, IL IC = 1, 2 : print the map 0-2, 0-2[×10n] 2*I
IL = 1, 2[×10n] : print field and coordinates along trajectories.

BNORM, AN,RN Field and A-,R-coordinate normalization coeffs. 3*no dim. 3*E

TITL Title. Start with “FLIP” to get field map X-flipped A80

IA, JR Number of angular and radial nodes of the mesh ≤ 400, ≤ 200 2*I

FNAME 1 File name A80

ID, A, B, C Integration boundary. Ineffective when ID = 0. ≥ −1, 2*no dim., I,3*E
[, A′, B′, C ′, ID = -1, 1 or ≥ 2 : as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B′′, etc., if ID ≥ 2] cm, etc.]

IORDRE Degree of interpolation polynomial 2, 25 or 4 I
(see DIPOLE-M )

XPAS Integration step cm E

KPOS as for DIPOLE-M. Normally 2. 1-2 I
If KPOS = 2
RE, TE, RS, TS cm, rad, cm, rad 4*E
If KPOS = 1
DP no dim. E

1 FNAME (e.g., spes2.map) contains the field data.
These must be formatted according to the following FORTRAN read sequence - details
and possible updates are to be found in the source file ’fmapw.f’ :

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,100) (Y(J), J=1, JY)
ENDIF
100 FORMAT(10 F8.2)
DO 1 I = 1,IX
IF (BINARY) THEN
READ (NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.1)
ENDIF
1 CONTINUE

where X(I) and Y (J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J)
of the mesh. For binary files, FNAME must begin with ’B ’ or ’b ’. ‘Binary’ will then automatically be set to ‘.TRUE.’
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PS170 : Simulation of a round shape dipole magnet

PS170 is dedicated to a ‘rough’ simulation of CERN PS170 spectrometer dipole.

The field B0 is constant inside the magnet, and zero outside. The pole is a circle of radius R0, centered on the X axis. The output
coordinates are generated at the distance XL from the entrance (Fig. 1).

Figure 1: Scheme of the PS170 magnet simulation.

1



PS170 Simulation of a round shape dipole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length of the element, radius of the circular 2*cm, kG 3*E
dipole, field

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

Scheme of the PS170 magnet simulation.
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QUADISEX Sharp edge magnetic multipoles
BZ |Z=0= B0

(
1 + N

R0
Y + B

R2
0
Y 2 + G

R3
0
Y 3

)

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length of the element ; normalization distance ; field 2*cm, kG 3*E

N , EB1, EB2, EG1, EG2 Coefficients for the calculation of B. 5*no dim. 5*E
if Y > 0 : B = EB1 and G = EG1 ;
if Y < 0 : B = EB2 and G = EG2.

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)
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QUADRUPO : Quadrupole magnet (Fig. 1)

The length of the magnet XL is the distance between the effective field boundaries (EFB), Fig. 2. The field at the pole tip R0 is
B0.
The extent of the entrance (exit) fringe field is characterized by λE(λS). The distance of ray-tracing on both sides of the EFB’s,
in the field fall off regions, will be ±XE at the entrance, and ±XS at the exit (Fig. 2), by prior and further automatic change of
frame.
In the fringe field regions [−XE , XE ] and [−XS , XS ] on both sides of the EFB’s, ~B(X,Y, Z) and its derivatives up to fourth
order are calculated at each step of the trajectory from the analytical expressions of the three components BX , BY , BZ obtained
by differentiation of the scalar potential (see section ??) expressed to the 8th order in Y and Z.

V (X,Y, Z) =

(
G− G′′

12
(Y 2 + Z2) +

G ′′′′

384
(Y 2 + Z2)2 − G ′′′′′′

23040
(Y 2 + Z2)3

)
Y Z

( G′′ = d2G/dX2, ...)

where G is the gradient on axis [?] :

G(s) =
G0

1 + expP (s)
with G0 =

B0

R0

and,

P (s) = C0 + C1

( s

λ

)
+ C2

( s

λ

)2

+ C3

( s

λ

)3

+ C4

( s

λ

)4

+ C5

( s

λ

)5

P (s) = C0 + C1

( s

λ

)
+ C2

( s

λ

)

where, s is the distance to the field boundary and λ stands for λE or λS (normally, λ ≃ 2 ∗R0).
When fringe fields overlap inside the magnet (XL ≤ XE +XS), the gradient G is expressed as

G = GE +GS − 1

where, GE is the entrance gradient and GS is the exit gradient.
If λE = 0 (λS = 0), the field at entrance (exit) is considered as sharp edged, and then XE(XS) is forced to zero (for the mere
purpose of saving computing time).
Outside of the fringe field regions (or everywhere when λE = λS = 0) ~B(X,Y, Z) in the magnet is given by

BX = 0

BY = G0Z

BZ = G0Y
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Figure 1: Quadrupole magnet

Figure 2: Scheme of the longitudinal field gradient G(X).
(OX) is the longitudinal axis of the reference frame (0, X, Y, Z) of zgoubi.
The length of the element is XL. Trajectories are ray-traced from −XE to
XL+XS , by means of respectively prior and final automatic change of frame.
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QUADRUPO Quadrupole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0,B0 Length ; radius and field at pole tip 2*cm, kG 3*E

Entrance face :
XE , λE Integration zone extent ; fringe field 2*cm 2*E

extent (≃ 2R0, λE = 0 for sharp edge)

NCE, C0 − C5 NCE = unused any, 6*no dim. I, 6*E
C0 − C5= Fringe field coefficients such that
G(s) = G0/(1 + expP (s)), with G0 = B0/R0

and P (s) =
∑5

i=0 Ci(s/λ)
i

Exit face
XS , λS See entrance face 2*cm 2*E
NCS, C0 − C5 0-6, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)
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REBELOTE : ’Do it again’

When REBELOTE is encountered in the input data file, the code execution jumps,
- either back to the beginning of the data file - the default behavior,
- or (option K=99.1 or K=99.2 ) back to a particular LABEL.

Then NPASS-1 passes (from LABEL to REBELOTE ) follow.
As to the last pass, number NPASS+1, there are two possibilities :

- either it also encompasses the whole LABEL to REBELOTE range,
- or, upon request (option K=99.2 ), execution may exit that final pass upstream of REBELOTE, at a location defined by

a second dedicated LABEL placed between the first above mentioned LABEL, and REBELOTE. In both cases, following the
end of this “multiple-pass” procedure, the execution continues from the keyword which follows REBELOTE, until ’END’ is
encountered.

The two functionalities of REBELOTE are the following :
• REBELOTE can be used for Monte Carlo simulations when more than Max(IMAX) particles are to be tracked. Thus, when
the following random procedures are used : MCOBJET, OBJETA, MCDESINT, SPNTRK (KSO = 5), their random seeds are
not reset and independent statistics will add up.
This includes Monte Carlo simulations, in beam lines : normally K = 0. NPASS runs through the same structure, from
MCOBJET to REBELOTE will follow, resulting in the calculation of (1 + NPASS) ∗ IMAX trajectories, with as many random
initial coordinates.

• REBELOTE can be used for multi-turn ray-tracing in circular machines circular machines : normally K = 99 in that case.
NPASS turns in the same structure will follow, resulting in the tracking of IMAX particles over 1 + NPASS turns. For the
simulation of pulsed power supplies, synchrotron motion, and other Q-jump manipulation, see SCALING.
For instance, using option described K=99.2 above, a full “injection line + ring + extraction line” installation can be simulated -
kicker firing and other magnet ramping can be simulated using SCALING.
Using the double-LABEL method discussed above with option K=99.2, it is possible to encompass the ring between an injection
line section (namely, with the element sequence of the latter extending from OBJET to the first LABEL), and an extraction line
(its description will then follow REBELOTE ), whereas the ring description extends from to the first LABEL to REBELOTE,
with possible extraction, at the last pass, at the location of the second LABEL, located between the first one and REBELOTE,

Output prints over NPASS+1 passes might result in a prohibitively big zgoubi.res file. They may be switched on/off by means
of the option KWRIT= i.j, with i = 1/0 respectively. The j flag commands printing pass number and some other information
onto the video output, every 10j−1 turns if j > 0 ; output is switched off if j = 0.

REBELOTE also provides information : statistical calculations and related data regarding particle decay (MCDESINT), spin
tracking (SPNTRK), stopped particles (CHAMBR, COLLIMA ), etc.

COMBINING REBELOTE AND FIT[2] The keyword REBELOTE can follow FIT[2]. This allows executing again the same
fit procedure, after having changed the value of some parameter in zgoubi.dat. That’s the role of REBELOTE in that game : it
changes that parameter, and then sends the zgoubi execution pointer back to the top of zgoubi.dat for a new run.

An example : see page ??

1



REBELOTE Jump to the beginning of zgoubiinput data file

NPASS , KWRIT, K[.n], NPASS : Number of runs ; KWRIT = 1.1 (resp. 0.0) switches arbitrary ; 3*I
[, Label1 [, Label2]] (inhibits) FORTRAN WRITEs to .res and to screen ; 0-1 ; 0, 22, 99 2A10

K option :
K = 0 : initial conditions (coordinates and spins)
are generated following the regular functioning
of object definitions. If random generators are
used (e.g. in MCOBJET ) their seeds will not be reset.
K = 22 : next run will account for new parameter values in
zgoubi.dat data list, see below.
K = 99 : coordinates at end of previous pass are used as initial
coordinates for the next pass ; idem for spin components.
K = 99.1 : Label1 is expected, subsequent passes will start from
element with Label1 down to REBELOTE and so forth ;
K = 99.2 : Label1 and Label2 are expected ; last pass (# NPASS+1)
will end at element with Label2 whereupon execution will jump to the keyword
next to REBELOTE and will be carried out down to ’END’.

If K = 22 1

NPRM Number of parameters to be changed for next runs I

Repeat NPR times the following sequence (tells parameters concerned, and for each its successive values) :

LMNT, PRM, NV*Val Keyword # in zgoubi.dat list ; parameter # under that Keyword -, -, NV*dim2 2*I, NV*E
(same as for FIT[2], see page ??) ; NV successive values (if
NV < NPASS then last value is maintained over remaining passes).

1 K=22 is compatible with use of the FIT[2] procedure : e.g., allows successive FITs in a run, with successive sets of optical parameters.
2 V is in current zgoubi units in the case of particle coordinates (cm, mrad). It is in MKSA units (m, rad) in the case of matrix coefficients.
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RESET Reset counters and flags

Resets counters involved in CHAMBR , COLLIMA
HISTO and INTEG procedures

Switches off CHAMBR, MCDESINT , SCALING and
SPNTRK options

1



SCALING : Power supplies and R.F. function generator

SCALING acts as a function generator dedicated to varying fields in optical elements, potentials in electrostatic devices, RF
parameters in CAVITE. It is normally intended to be declared right after the object definition, and used in conjunction with
REBELOTE, for the simulation of multi-turn tracking - possibly including acceleration cycles.

SCALING acts on families of elements, a family being designated by its name that coincides with the keyword of the corre-
sponding element. For instance, declaring MULTIPOL as to be varied will result in the same timing law being applied to all
MULTIPOL ’s in the zgoubi optical structure data file. Subsets can be selected by labeling keywords in the data file (section ??,
page ??) and adding the corresponding LABEL(s) in the SCALING declarations (two LABEL’s maximum). The family name
of concern, as well as the scaling function for that family, are given as input data to the keyword SCALING. There is an upper
limit, NFMAX, to the number NF of families that can be declared as subject to a scaling law, NFMAX can be changed in
the FORTRAN include file MXFS.H. A scaling law can be comprised of up to NT successive timings, between two successive
timings, a linear interpolation law is used to determine the scaling factor.

An example of data formatting for the simulation of an acceleration cycle in a circular machine is given in the following.

SCALING - Scaling
1 4 Active. NF = 4 families of elements are concerned, as listed below
QUADRUPO QFA QFB - Quadrupoles labeled ’QFA’ and Quadrupoles labeled ’QFB’
2 NT = 2 timings
18131.E-3 24176.E-3 The field increases (linearly) from 18131E-3∗B0 to 24176E-3∗B0

1 6379 from turn 1 to turn 6379
MULTIPOL QDA QDB - Multipoles labeled ’QDA’ and Multipoles labeled ’QDB’
2 NT = 2 timings
18131.E-3 24176.E-3 Fields increase from 18131E-3∗Bi to 24176E-3∗Bi (∀i = 1, 10 poles)
1 6379 from turn 1 to turn 6379
BEND - All BEND ’s (regardless of any LABEL)
2 NT = 2 timings
18131.E-3 24176.E-3 As above
1 6379
CAVITE - Accelerating cavity
3 NT = 3 timings
1 1.22 1.33352 The synchronous rigidity (Bρ)s increases,
1 1200 6379 from (Bρ)so to 1.22 ∗(Bρ)so from turn 1 to 1200, and

from 1.22 ∗(Bρ)so to 1.33352 (Bρ)so from turn 1200 to 6379

The timing is in unit of turns. In this example, TIMING = 1 to 6379 (turns). Therefore, at turn number N, B and Bi are updated
in the following way. Let SCALE (TIMING = N ) be the updating scale factor

SCALE(N) = 18.131
24.176− 18.131

1 + 6379− 1
(N − 1)

and then

B(N) = SCALE(N)B0

Bi(N) = SCALE(N)Bi0

The RF frequency is computed using

fRF =
hc

L
q(Bρ)s

(q2(Bρ)2s + (Mc2)2)1/2

where the rigidity is updated in the following way. Let (Bρ)so be the initial rigidity (namely, (Bρ)so = BORO as defined in the
keyword OBJET for instance). Then, at turn number N ,

if 1 ≤ N ≤ 1200 then, SCALE(N) = 1 +
1.22− 1

1 + 1200− 1
(N − 1)

if 1200 ≤ N ≤ 6379 then, SCALE(N) = 1.22 +
1.33352− 1.22

1 + 6379− 1200
(N − 1200)

and then,
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(Bρ)s(N) = SCALE(N) · (Bρ)so
from which value the calculations of fRF (N) follow.

NT can take negative values, then acting as an option switch (rather than giving number of timings), as follows :
• NT = −1 : this is convenient for synchrotron acceleration. In this case the next two lines both contain a single data (as for
NT = 1), respectively the starting scaling factor value, and 1. The current field scaling factor will then be updated from the
energy kick by the cavity if for instance CAVITE/IOPT=2 is used, namely,

SCALE(N) = SCALE(N − 1) ∗ Bρ(N)

Bρ(N − 1)

• NT = −2 : this is convenient for reading an RF law for CAVITE from an external data file, including usage for acceleration
in fixed field accelerators.
• NT = 1.10 : allows taking the scaling law from an external data file, as in the following example :

MULTIPOL COH1
1.10
./Csnk3D/bump centered.scal File name
1 2 Column numbers in the file : col. 2 gives the scaling

factor at rigidity given by col. 1.

Notes :

1. In causing, via CAVITE, a change of the synchronous rigidity, SCALING causes a change of the reference rigidity, following
(see CAVITE )

Bρref = BORO −→ Bρref = BORO + δBρs

2. It may happen that some optical elements won’t scale, for source code development reasons. This should be paid attention to.
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SCALING Power supplies and R.F. function generator

IOPT, NFAM IOPT = 0 (inactive) or 1 (active) ; 0-1 ; 1-9 2*I
NFAM = number of families to be scaled

For NF=1, NFAM : repeat NFAM times the following sequence :

NAMEF [, Lbl [, Lbl]] Name of family (i.e., keyword of concern) [, up to 2 labels] A10 [,A10[,A10]]

NT NT > 0 : number of timings ; -2, -1 or 1-10 I
NT = −1 : field scaling factor updated by CAVITE ;
NT = −2 : RF law in CAVITE is read from external data file.

SCL(I), I = 1, NT Scaling values (a single one, normally 1, if NT = −1). relative NT*E

TIM(I), I = 1, NT Corresponding timings, in units of turns (1 if NT = −1). turn number NT*I
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SEPARA : Wien Filter - analytical simulation

Note : simulation by stepwise integration can be found in WIENFILTER.

SEPARA provides an analytic simulation of an electrostatic separator. Input data are the length L of the element, the electric
field E and the magnetic field B. The mass m and charge q of the particles are entered by means of the keyword PARTICUL.

The subroutines involved in SEPARA solve the following system of three equations with three unknown variables S, Y , Z (while
X ≡ L), that describe the cycloidal motion of a particle in ~E, ~B static fields (Fig. 1).

X = −R cos

(
ωS

βc
+ ǫ

)
− αS

ωβc
+

C1

ω

Y = R sin

(
ωS

βc
+ ǫ

)
− α

ω2
− C2

ω
+ Y0

Z = S sin(P0) + Z0

where, S is the path length in the separator, α = −Ec2

γ
, ω = −Bc2

mγ
, C1 = β sin(T0) cos(P0) and C2 = βc cos(T0) cos(P0)

are initial conditions. c = velocity of light, βc = velocity of the particle, γ = (1−β2)
−
1

2 and tan ǫ = (C2 +
α

ω
)/C1. Y0, T0, Z0,

P0 are the initial coordinates of the particle in the zgoubi reference frame. Here βc and γ are assumed constant, which is true as
long as the change of momentum due to the electric field remains negligible all along the separator.

The option index IA in the input data allows switching to inactive element (thus equivalent to ESL ), horizontal or vertical
separator. Normally, E, B and the value of βW for wanted particles are related by

B(T ) = −
E

(
V

m

)

βW · c
(m
s

)

Figure 1: Horizontal separation between a wanted particle, (W ), and an unwanted particle, (U).
(W ) undergoes a linear motion while (U) undergoes a cycloidal motion.
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SEPARA 1 Wien Filter - analytical simulation

IA, XL, E, B, IA = 0 : element inactive 0-2, m, I, 3*E
IA = 1 : horizontal separation V/m, T
IA = 2 : vertical separation ;
Length of the separator ; electric field ; magnetic field.

Horizontal separation between a wanted particle, (W ), and an unwanted particle, (U).
(W ) undergoes a linear motion while (U) undergoes a cycloidal motion.

1 SEPARA must be preceded by PARTICUL for the definition of mass and charge of the particles.
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SEXQUAD Sharp edge magnetic multipole
BZ |Z=0= B0

(
N
R0

Y + B
R2

0
Y 2 + G

R3
0
Y 3

)

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length of the element ; normalization distance ; field 2*cm, kG 3*E

N , EB1, EB2, EG1, EG2 Coefficients for the calculation of B. 5*no dim. 5*E
if Y > 0 : B = EB1 and G = EG1 ;
if Y < 0 : B = EB2 and G = EG2.

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)
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SEXTUPOL : Sextupole magnet (Fig. 1)

The meaning of parameters for SEXTUPOL is the same as for QUADRUPO.

In fringe field regions the magnetic field ~B(X,Y, Z) and its derivatives up to fourth order are derived from the scalar potential
approximated to 7th order in Y and Z

V (X,Y, Z) =

(
G− G′′

16
(Y 2 + Z2) +

G ′′′′

640
(Y 2 + Z2)2

)(
Y 2Z − Z3

3

)

with G0 =
B0

R2
0

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. ??.

Outside fringe field regions, or everywhere in sharp edge sextupole (λE = λS = 0), ~B(X,Y, Z) in the magnet is given by

BX = 0

BY = 2G0Y Z

BZ = G0(Y
2 − Z2)

Figure 1: Sextupole magnet
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SEXTUPOL Sextupole Magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0,B0 Length ; radius and field at pole tip of the element 2*cm, kG 3*E

Entrance face :
XE , λE Integration zone ; fringe field 2*cm 2*E

extent (λE = 0 for sharp edge)

NCE, C0 − C5 NCE = unused any, 6* I, 6*E
C0 − C5 = Fringe field coefficients such that no dim.
G(s) = G0/(1 + expP (s)), with G0 = B0/R

2
0

and P (s) =
∑5

i=0 Ci(s/λ)
i

Exit face :
XS , λS Parameters for the exit fringe field ; see entrance 2*cm 2*E

NCS, C0 − C5 0-6, 6*no dim. I, 6*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

Sextupole magnet
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SOLENOID : Solenoid (Fig. 1)

The solenoidal magnet has an effective length XL, a mean radius R0 and an asymptotic field B0 = µ0NI/XL (i.e.,
∫∞
−∞ BX(X, r)dX =

µ0NI, ∀r < R0), wherein BX=longitudinal field component, NI = number of Ampere-Turns, µ0 = 4π10−7.

The distance of ray-tracing beyond the effective length XL, is XE at the entrance, and XS at the exit (Fig. 1).

Two methods are available for the computation of the field ~B(X, r) and its derivatives.
Method 1 : ~B(X, r), r = (Y 2 + Z2)1/2 and its derivatives up to second order at all (X,Y, Z) are calculated following Ref. [?],
based on the three complete elliptic integrals K, E and Π. The latter are calculated with the algorithm proposed in the same
reference, their derivatives are calculated by means of recursive relations [?].

This analytical model for the solenoidal field allows simulating an extended range of coil geometries (length, radius) provided
that the coil thickness is small enough compared to the mean radius R0.

In particular the field on-axis writes (taking X = r = 0 at the center of the solenoid)

BX(X, r = 0) =
µ0NI

2XL

[
XL/2−X√

(XL/2−X)2 +R2
0

+
XL/2 +X√

(XL/2 +X)2 +R2
0

]

and yields the magnetic length

Lmag ≡
∫∞
−∞ BX(X, r < R0)dX

BX(X = r = 0)
= XL

√
1 +

4R2
0

XL2 > XL (1)

with in addition
BX(center) ≡ BX(X = r = 0) =

µ0NI

XL

√
1 +

4R2
0

XL2

.

Method 2 : The second method available uses eq. 1 above as a 1-D model and uses off-axis extrapolation to derive the field and
its derivatives at all (X,Y, Z), following the method described in section ??.

Figure 1: Solenoidal magnet.
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SOLENOID SOLENOIDTitl

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, R0, B0 Length ; radius ; asymptotic field (=µ0NI/XL) 2*cm, kG 3*E

XE , XS Entrance and exit integration zones 2*cm 2*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)
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SPINR : Spin rotation

Spin precession, a local transformation.

The precession is defined by its axis and its value.

1



SPINR SPINRTitl

Θx, ΦX Angles that define the spin precession axis. 2*rad 2*E

µ Spin precession angle. rad E
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SPNPRNL Store spin coordinates in file FNAME

FNAME 1 Name of storage file (e.g., zgoubi.spn) A80

SPNSTORE Store spin coordinates every IP other pass

FNAME 1 Name of storage file (e.g., zgoubi.spn) [ ; label(s) of the element(s) A80
[,LABEL(s) ] 2 at the exit of which the store occurs (10 labels maximum)]. [, 10*A10]

IP Store every IP other pass (when using REBELOTE I
with NPASS ≥ IP − 1).

SPNPRT Print spin coordinates

Print spin coordinates into zgoubi.res, at the location where this
keyword is introduced in the structure.

1 FNAME = ’none’ will inhibit printing.
2 If first LABEL = ’none’ then printing will be inhibited.
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SPNTRK : Spin tracking

The keyword SPNTRK allows switching spin tracking on (index KSO=1) or off (KSO=0), or resuming (index KSO=-1, fol-
lowing an occurence KSO=0). It also permits the attribution of an initial spin to each one of the IMAX particles of the beam,
following a distribution that depends on the option index KSO. It must be preceded by PARTICUL for the definition of mass and
gyromagnetic factor.

KSO = 1 (respectively 2, 3) : the IMAX particles defined with [MC]OBJET are given a longitudinal (1,0,0) spin component
(respectively transverse horizontal (0,1,0), vertical (0,0,1)).

KSO = 4 : initial spin components are entered explicitly for each one of the IMAX particles of the beam.

KSO = 4.1 : three initial spin components SX , SY , SZ are entered explicitly just once, they are then assigned to each one of
the IMAX particles of the beam.

KSO = 5 : random generation of IMAX initial spin conditions as described in Fig. 1. Given a mean polarization axis (S) defined
by its angles T0 and P0, and a cone of angle A with respect to this axis, the IMAX spins are sorted randomly in a Gaussian
distribution

p(a) = exp

[
− (A− a)2

2δA2

]
/δA

√
2π

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available by this mean are
given in Fig. 2.

Z

S

P
o Y

δA

X

T o

A

Figure 1: Spin distribution as obtained with option KSO = 5.
The spins are distributed within an annular strip δA (standard deviation) at
an angle A with respect to the axis of mean polarization (S) defined by T0

and P0.
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Z

Y

X
A

(B)

S=0

Z

Y

X

δA

S

(A)

Figure 2: Examples of the use of KSO =5.
A : Gaussian distribution around a mean vertical polarization axis, obtained with T0 =
arbitrary, P0 = π/2, A = 0 and δA 6= 0.
B : Isotropic distribution in the median plane, obtained with P0 = ±π/2, A = π/2, and
δA = 0.

2



SPNTRK 1 Spin tracking

KSO KSO=0 : spin tracking [switched] off ; KSO=-1 : spin tracking -1 or 0 or I
resumes. Otherwise : as stated below. 1-3 0r 4[.1] or 5

If KSO = 1 – 3 KSO = 1 (respectively 2, 3) : all particles
have their spin automatically set to (1,0,0),
longitudinal [respectively (0,1,0), horizontal
and (0,0,1), vertical]

If KSO = 4 Repeat IMAX times (corresponding to the IMAX
particles in ‘OBJET ’) the following sequence :

SX , SY , SZ X , Y and Z initial components of the initial spin. 3*no dim. 3*E

If KSO = 4.1

SX , SY , SZ X , Y and Z components of the initial spins. 3*no dim. 3*E
These will be assigned to all particles.

If KSO = 5 Random distribution in a cone (see figure)
Enter the following two sequences :

TO, PO, A, δA Angles of average polarization : 4*rad 4*E
A = angle of the cone ; δA = standard deviation
of distribution around A

IR Random sequence seed ∼< 106 I

1 SPNTRK must be preceded by PARTICUL for the definition of G and mass.
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SRLOSS : Synchrotron radiation loss [?]

The keyword SRLOSS allows activating or stopping (option KSR = 1, 0 respectively) stepwise tracking of energy loss by
stochastic emission of photons in magnetic fields, following the method described in section ??.

It can be chosen to allow radiation in the sole dipole fields, or in all types of fields regardless of their multipole composition. It
can also be chosen to allow for the radiation induced transverse kick.

SRLOSS must be preceded by PARTICUL for defining mass and charge values as they enter in the definition of SR parameters.

Statistics on SR parameters are computed and updated while tracking, the results of which can be obtained by means of the
keyword SRPRNT .

1



SRLOSS Synchrotron radiation loss

KSR[.i] Switch ; i = 1 causes info output into zgoubi.SRLOSS.out 0− 1 2*I

STR1, STR2 Options : STR1 = ’ALL’ or ’all’ or a particular KEYWORD ; 2*A
STR2 = ’scale’ will scale fields with energy loss.

Option, seed Option : 0 / inhibited, 1 / photon entails dp only, 1− 3, > 105 I
2 / photon entails dp and angle kick.
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SRPRNT : Print SR loss statistics

SRPRNT may be introduced anywhere in a structure. It allows switching on synchrotron radiation loss computation. It produces
in addition a print out (to zgoubi.res) of current state of statistics on several parameters related to SR loss presumably activated
beforehand with keyword SRLOSS.

1



SRPRNT Print SR loss statistics into zgoubi.res
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SYNRAD : Synchrotron radiation spectral-angular densities

The keyword SYNRAD enables (or disables) the calculation of synchrotron radiation (SR) electric field and spectral angular
energy density. It must be preceded by PARTICUL for defining mass and charge values, as they enter in the definition of SR
parameters.

SYNRAD is supposed to appear a first time at the location where SR should start being taken into account, with the first data
KSR set to 1. It results in on-line storage of the electric field vector and other relevant quantities in zgoubi.sre, as step by step
integration proceeds. The observer position (XO, Y O, ZO) is specified next to KSR.

Data stored in zgoubi.sre :
(ELx, ELy, ELz) : electric field vector ~E (eq. ??)

(btx, bty, btz) = ~β =
1

c
× particle velocity

(gx, gy, gz) =
d~β

dt
= particle acceleration (eq. ??)

∆τ = observer time increment (eq. ??)
t′ = τ − r(t′)/c = retarded (particle) time
(rtx, rty, rtz) : ~R(t), particle to observer vector (eq. ??)
(x, y, z) = particle coordinates
∆s = step size in the magnet (fig. ??)
NS = step number
I = particle number
LET (I) = tagging letter
IEX(I) = stop flag (see section ??)

SYNRAD is supposed to appear a second time at the location where SR calculations should stop, with KSR set to 2. It results
in the output of the angular energy density

∫ ν2

ν1
∂3W/∂φ∂ψ ∂ν (eq. ??) as calculated from the Fourier transform of the electric

field (eq. ??). The spectral range of interest and frequency sampling (ν1, ν2, N ) are specified next to KSR.

1



SYNRAD Synchrotron radiation spectral-angular densities

KSR Switch 0-2 I
0 : inhibit SR calculations
1 : start
2 : stop

If KSR = 0

D1, D2, D3 Dummies 3*E

If KSR = 1

X0, Y 0, Z0 Observer position in frame of magnet next to SYNRAD 3*m 3*E

If KSR = 2

ν1, ν2, N Frequency range and sampling 2*eV, no dim. 2*E, I
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SYSTEM : System call

The keyword SYSTEM allows one or a series of system calls. It can appear anywhere, an arbitrary number of times, in the
zgoubi.dat data list. It is effective at the very location where it appears.

SYSTEM keyword is followed by the list of the desired system commands. That can be saving zgoubi output files, calling again
zgoubi at the end of a run so allowing dependent consecutive jobs, etc.

1



0.1 Optical Elements and Related Numerical Procedures

2



SYSTEM System call

NCMD The number of calls to follow. ≤ 0 I

NCMD lines follow, one command per line.
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TOSCA : 2-D and 3-D Cartesian or cylindrical mesh field map

TOSCA is dedicated to the reading and treatment of 2-D or 3-D Cartesian or cylindrical mesh field maps as delivered by the
TOSCA magnet computer code standard output.

A pair of flags, MOD, MOD2, determine whether Cartesian or Z-axis cylindrical mesh is used, and the nature of the field map
data set.

The total number of field data files to be read is determined by the MOD flag (see below) and by the parameter IZ that appears in
the data list following the keyword. Each of these files contains the field components BX , BY , BZ on an (X , Y ) mesh. IZ = 1
for a 2-D map, and in this case BX and BY are assumed zero all over the map1. For a 3-D map with mid-plane symmetry,
described with a set of 2-D maps at various Z, then MOD=0 and IZ ≥ 2, and thus, the first data file whose name follows in the
data list is supposed to contain the median plane field (assuming Z = 0 and BX = BY = 0), while the remaining IZ − 1 file(s)
contain the IZ − 1 additional planes in increasing Z order. For arbitrary 3-D maps, no symmetry assumed, then MOD=1 and
the total number of maps (whose names follow in the data list) is IZ, such that map number [IZ/2] + 1 is the Z = 0 elevation
one.

The field map data file has to be be filled with a format that fits the FORTRAN reading sequence. The following is an instance,
details and possible updates are to be found in the source file ’fmapw.f’ :

DO 1 K = 1, KZ
OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
ELSE
READ(NL,100) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
100 FORMAT(1X,6E11.2)
ENDIF
1 CONTINUE

IX (JY , KZ) is the number of longitudinal (transverse horizontal, vertical) nodes of the 3-D uniform mesh. For letting zgoubi
know that these are binary files, FNAME must begin with ‘B ’ or ‘b ’.

In addition to the MOD=1, 2 cases above, one can have MOD=12 and in that case a single file contains the all 3-D field map.
See table below and the FORTRAN subroutine fmapw.f and its entries FMAPR, FMAPR2, for more details, in particular the
formatting of the field map data file(s).

1Use MAP2D in case non-zero BX , BY are to be taken into account in a 2-D map.
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MOD MOD2

MOD ≤ 19 : Cartesian mesh

0 and IZ = 1 none 2-D map, a single data file for BZ(X,Y )|Z=0,
mid-plane symmetry.

0 and IZ > 1 none 3-D map, 1+IZ/2 data files of upper half of magnet, one
per (X,Y)|0≤Z≤Zmax

plane, mid-plane symmetry.

0 1, 2, 3 As previous case, just different reading formats.

1 none 2- or 3-D map, IZ data files, one per (X,Y) plane, no
symmetry assumed.

1 1, 2, 3 As previous case, just different reading formats.

3 none, 1 AGS main magnet field map, 2-D, mid-plane symmetry
assumed. MOD2=1 causes field to be perturbed by
(1 + n1 dY + n2 dY

2 + n3 dY
3) factor.

12 none 3-D map, single file, upper half of magnet, symmetry
with respect to (X,Y) mid-plane.

12 1 3-D map, single file, whole magnet volume (thus no
symmetry assumed).

12 2 3-D map, single file, 1/8th of the magnet, symmetry wrt.
(X,Y), (X,Z), (Y,Z) planes.

15 1-6 3-D map, whole magnet volume (thus no symmetry
assumed), up to 6 maps summed up : at all node,
~B =

∑i=MOD2
i=1 ai ~Bi.

MOD ≥ 20 : Cylindrical mesh

20, 21 3-D map, single file, half a magnet, cyl. symmetry with
respect to (Y,Z) plane.

22, 24 3-D map, single file, half a magnet, symmetry with
respect to (X,Y) mid-plane.

The field ~B = (BX , BY , BZ) is normalized by means of BNORM in a similar way as in CARTEMES. As well the coordinates
X and Y (and Z in the case of a 3-D field map) are normalized by the X-[, Y-, Z-]NORM coefficient (useful to convert to
centimeters, the working units in zgoubi).

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated
- in the case of 2-D map, by means of a second or fourth order polynomial interpolation, depending on IORDRE (IORDRE

= 2, 25 or 4), as for CARTEMES,
- in the case of 3-D map, by means of a second order polynomial interpolation with a 3× 3× 3-point parallelepipedic grid,

as described in section ??.

Entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be defined, in the same
way as in CARTEMES.

2



TOSCA 2-D and 3-D Cartesian or cylindrical mesh field map

IC, IL see CARTEMES 0-2, 0-2 2*I

BNORM, XN,YN, ZN Field and X-,Y-,Z-coordinate normalization coefficients 4*no dim. 4*E

TITL Title. Include “FLIP” to get field map X-flipped. Include A80
“HEADER n” in case FNAME starts with n ≥ 1 header lines.

IX , IY , IZ, Number of nodes of the mesh in the X , Y ≤MXX 1, ≤MXY, 3*I
MOD[.MOD2] and Z directions, IZ = 1 for single 2-D map ; ≤IZ, ≥ 0[.1-9]

MOD : operational and map FORMAT reading mode 2;
MOD≤19 : Cartesian mesh ;
MOD≥20 : cylindrical mesh.
MOD2, optional, tells the reading FORMAT, default is ’*’.

FNAME 1 Names of the NF files that contain the 2-D maps, from Z(1) to Z(NF ). A80
(K = 1, NF ) If MOD=0 : NF = 1 + [IZ/2], the NF 2-D maps are for 0 ≤ Z ≤ Zmax,

they are symmetrized with respect to the Z(1) = 0 plane.
If MOD=1 : NF = IZ, no symmetry assumed ; Z(1) = Zmax,
Z(1 + [IZ/2]) = 0 and Z(NF ) = −Zmax .
If MOD=12 : a single FNAME file contains the all 3-D volume.
If MOD=20-22 : other symmetry options, see toscap.f routine...

ID, A, B, C [, A′, B′, C ′, Integration boundary. Ineffective when ID = 0. ≥ −1, cm, I,3*E
A′′, etc., if ID ≥ 2] ID = -1, 1 or ≥ 2 : as for CARTEMES 2*no dim. [,idem] [,3*E,etc.]

IORDRE If IZ = 1 : 3, 4, 25, as in CARTEMES ; unused if IZ 6= 1. 2, 25 or 4 I

XPAS Integration step cm E

If Cartesian mesh (see MOD) :
KPOS, XCE, YCE, ALE KPOS=1 : element aligned, 2 : misaligned ; shifts, tilt 1-2, 2*cm, rad I, 3*E
If polar mesh :
KPOS as for POLARMES. Normally 2. 1-2 I
If KPOS = 2
RE, TE, RS, TS cm, rad, cm, rad 4*E

1MXX, MXY, IZ may be changed, they are stated in the include file PARIZ.H.

2Each file FNAME(K) contains the field specific to elevation Z(K) and must be formatted according to the following FORTRAN read sequence (that usu-
ally fits TOSCA code OUTPUTS - details and possible updates are to be found in the source file ’fmapw.f’) :

DO K = 1, NF
OPEN (UNIT = NL, FILE = FNAME(K), STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO J = 1, JY ; DO I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I) node coordinates, field components at node
ELSE
READ(NL,*) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I) node coordinates, field components at node
ENDIF
ENDDO ; ENDDO
NL = NL + 1
ENDDO

For 2-D maps BX and BY are assumed zero at all nodes of the 2-D mesh, regardless of BX(J,1,I), BY(J,1,I) values. For binary files, FNAME must be-
gin with ’B ’ or ’b ’.
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TRANSMAT : Matrix transfer

TRANSMAT performs a second order transport of the particle coordinates in the following way

Xi =
∑

j

RijX
0
j +

∑

j,k

TijkX
0
jX

0
k

where, Xi stands for any of the current coordinates Y , T , Z, P , path length and momentum dispersion, and X0
i stands for any

of the initial coordinates. [Rij ] ([Tijk]) is the first order (second order) transfer matrix as usually involved in second order beam
optics [?]. Second order transfer is optional. The length of the element represented by the matrix may be introduced for the
purpose of path length updating.

Note : MATRIX delivers [Rij ] and [Tijk] matrices in a format suitable for straightforward use with TRANSMAT.
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TRANSMAT Matrix transfer

IORDRE Transfer matrix order 1-2 I

XL Length (ineffective, for updating) m E

For IA = 1, 6 :

R(IA, IB), IB = 1, 6 First order matrix m, rad 6 lines
6*E each

If IORDRE = 2 Following records only if IORDRE = 2

T (IA, IB, IC), Second order matrix, six 6*6 blocks m, rad 36 lines
6*E each
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TRAROT : Translation-Rotation of the reference frame

UNDER DEVELOPMENT. Check before use.

This procedure transports particles into a new frame by translation and rotation. Effect on spin tracking, particle decay and
gas-scattering are taken into account (but not on synchrotron radiation).

1



TRAROT Translation-Rotation

TX , TY , TZ, Translations, rotations 3*m, 3*rad 6*E
RX , RY , RZ
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TWISS : Calculation of periodic optical parameters

TWISS causes the calculation of transport coefficients and various other global parameters, in particular periodical quantities as
tunes and optical functions, in the coupled hypothesis. TWISS is normally placed at the end of the structure ; it causes a series
of up to 5 successive passes in the structure (at the manner of REBELOTE ).

The object necessary for these calculations will be generated automatically if one uses OBJET with option KOBJ= 5.

TWISS works in a way similar to MATRIX, iterating the MATRIX process wherever necessary, changing for instance the
reference trajectory in OBJET for dp/p related computations. In particular :

- It assumes that the reference particle (particle #1 of 11, when using OBJET[KOBJ= 5] ) is located on the closed orbit. This
condition has to be satisfied for TWISS to work consistently.

- A first pass (the only one if KTW=1 ) through the structure allows computing the periodic optical functions from the rays.
- The periodic dispersions are used to define chromatic closed orbits at ±δp/p. A second and a third pass (which terminate

the process if KTW=2 ) with chromatic objects centered respectively on ±δp/p chromatic orbits will then compute the chromatic
first order transport matrices. From these the chromaticities are deduced.

- Anharmonicities need two additional passes (which terminate the process if KTW=3 ). They are deduced from the differ-
ence in tunes for particles tracked on different transverse invariants, horizontal or vertical.

1



0.1 Complements Regarding Various Functionalities
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TWISS Calculation of periodic optical parameters

KTW[.KTW2], KTW = 0/1/2/3 : Off / as MATRIX / add computation of 0-3[.1], 2*any I,2*E
FacD, FacA chromaticities / add computation of anharmonicities.

KTW2 = 1 : long write-up to zgoubi.res.
FacD ×D = δp/p value applied, with D the momentum sampling
in OBJET ; FacA : unused.

Example

’OBJET’
20015.55 ! 6 GeV electrons.
5 ! Will generate 11 particles.
.001 .001 .001 .001 0. .0001 ! Coordinate sampling for matrix computation : $delta_Y,
0. 0. 0. 0. 0. 1. ! delta_T, delta_Z, delta_P, delta_S (unused), delta_D$.
.................................
zgoubi.dat optics list in between
.................................
’TWISS’
2 1. 1. ! KTW = 3, FacD = 1
’END’

“KTW=3” under TWISS will cause 3 successive executions of zgoubi.dat and will result in delivery (print out to zgoubi.res) of
- the on-momentum matrix of the optical structure,
- off-momentum matrices at dp

p = ±FacD ∗ δD,
- the Twiss parameters in the hypothesis of a stable periodic structure,
- the momentum compaction, chromaticities, etc.
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UNDULATOR : Undulator magnet

UNDULATOR magnet. UNDER DEVELOPMENT.

1



UNDULATOR Undulator magnet

Under development, to be documented

2



UNIPOT : Unipotential cylindrical electrostatic lens

The lens is cylindrically symmetric about the X-axis.

The length of the first (resp. second, third) electrode is X1 (resp. X2, X3). The distance between the electrodes is D. The
potentials are V 1 and V 2. The inner radius is R0 (Fig. 1). The model for the electrostatic potential along the axis is [?]

V (x) =
V 2− V 1

2ωD



ln

cosh

ω

(
x+

X2

2
+D

)

R0

cosh

ω

(
x+

X2

2

)

R0

+ ln
cosh

ω

(
x− X2

2
−D

)

R0

cosh

ω

(
x− X2

2

)

R0




(x = distance from the center of the central electrode ; ω = 1,318 ; cosh = hyperbolic cosine), from which the field ~E(X,Y, Z)
and its derivatives are deduced following the procedure described in section ??.

Use PARTICUL prior to UNIPOT, for the definition of particle mass and charge.

The total length of the lens is X1 +X2 +X3 + 2D ; stepwise integration starts at entrance of the first electrode and terminates
at exit of the third one.

Figure 1: Three-electrode cylindrical unipotential lens.
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UNIPOT Unipotential electrostatic lens

IL IL = 1, 2 : print field and coordinates along trajectories 0-2[×10n]

X1, D, X2, X3, R0 Length of first tube ; distance between 5*m 5*E
tubes ; length of second and third tubes ; radius

V1, V2 Potentials 2*V 2*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

2



VENUS : Simulation of a rectangular shape dipole magnet

VENUS is dedicated to a ‘rough’ simulation of SATURNE Laboratory’s VENUS dipole. The field B0 is constant inside the
magnet, with longitudinal extent XL and transverse extent ±Y L ; outside these limits, B0 = 0 (Fig. 1).

Figure 1: Scheme of VENUS rectangular dipole.
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VENUS Simulation of a rectangular dipole magnet

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, Y L, B0 Length ; width = ±Y L ; field 2*cm, kG 3*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

Scheme of VENUS rectangular dipole.
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WIENFILT : Wien filter

WIENFILT simulates a Wien filter, with transverse and orthogonal electric and magnetic fields ~EY , ~BZ or ~EZ , ~BY (Fig. ??). It
must be preceded by PARTICUL for the definition of particle mass and charge.

The length XL of the element is the distance between its entrance and exit EFB’s. The electric and magnetic field intensities E0

and B0 in the central, uniform field region, normally satisfy the relation

B0 = − E0

βW c

for the selection of “ wanted” particles of velocity βW c. Ray-tracing in field fall-off regions extends over a distance XE (XS)
beyond the entrance (exit) EFB by means of prior and further automatic change of frame. Four sets of coefficients λ, C0 − C5

allow the description of the entrance and exit fringe fields outside the uniform field region, following the model [?]

F =
1

1 + exp(P (s))

where P (s) is of the term

P (s) = C0 + C1

( s

λ

)
+ C2

( s

λ

)2

+ C3

( s

λ

)3

+ C4

( s

λ

)4

+ C5

( s

λ

)5

and s is the distance to the EFB. When fringe fields overlap inside the element (i.e., XL ≤ XE + XS), the field fall-off is
expressed as

F = FE + FS − 1

where FE(FS) is the value of the coefficient respective to the entrance (exit) EFB.
If λE = 0 (λS = 0) for either the electric or magnetic component, then both are considered as sharp edge fields and XE(XS)
is forced to zero (for the purpose of saving computing time). In this case, the magnetic wedge angle vertical first order focusing
effect is simulated at entrance and exit by a kick P2 = P1 − Z1 tan(ǫ/ρ) applied to each particle (P1, P2 are the vertical angles
upstream and downstream the EFB, Z1 the vertical particle position at the EFB, ρ the local horizontal bending radius and ǫ the
wedge angle experienced by the particle ; ǫ depends on the horizontal angle T). This is not done for the electric field, however
it is advised not to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes
accounting for momentum effects of the non zero longitudinal electric field component.
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WIENFILT 1 Wien filter

IL IL = 1, 2[×10n] : print field and coordinates along trajectories. 0-2[×10n] I

XL, E, B, HV Length ; electric field ; magnetic field ; m, V/m, T, 3*E, I
option : element inactive (HV = 0) horizontal 0-2
(HV = 1) or vertical (HV = 2) separation

Entrance face :
XE, λEE

, λBE
Integration zone extent ; fringe field 3*cm 3*E
extents, E and B respectively (≃ gap height)

CE0–CE5 Fringe field coefficients for E 6*no dim. 6*E
CB0–CB5 Fringe field coefficients for B 6*no dim. 6*E

Exit face :
XS , λES

, λBS
See entrance face 3*cm 3*E

CE0–CE5 6*no dim. 6*E
CB0–CB5 6*no dim. 6*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1 : element aligned, 2 : misaligned ; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1 Use PARTICUL to declare mass and charge.
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